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Nomenclature

At dimensionless effective sublayer thickness in the inner boundary layer
Al equilibrium value of At

Afim surface area of the hot film

AR aspect ratio

B integral layer thickness in the Perry and Schofield [1973] theory

c blade chord length

1 empirical constant in the hot-film equation for surface shear stress
(7 empirical constant in the hot-film equation for surface shear stress
C law of the wall constant (=5.0)

Ca correlation coefficient of signals at locations a and b

Cy skin friction coefficient = }_;"llj?

CL lift coefficient = E&%"ﬂi‘:&

CL wake centerline

Cp static-pressure coefficient = Eéﬁ,%‘-

dB

decibel

diffusion factor



fp
fs

FFT

LDV

M

vi
error between the data and the wall-wake equation
voltage across the hot film
similarity function;
characteristic frequency
Doppler frequency
frequency shift
streamwise pressure gradient function of Abu-Ghannam and Shaw [1980)
fast Fourier transform
Clauser’s shape factor
convective heat transfer coeficient;
characteristic height of a roughness element, a downstream-facing step,
or a separation “bubble”
first shape factor = %
second shape factor = %‘
incidence angle = 8; — «x;
electrical current
thermal conductivity
kurtosis or flatness
turbulence “mixing length®
length of a hot film in the streamwise direction
reference length
distance from the blade surface to the location of Tmax
blade leading edge
pressure and suction surface length scales from the point of minimum
velocity to the point where the velocity defect is %(Ue - uu)
laser Doppler velocimeter

Mach number



vii
n data point index
N number of samples;

number of data points

Ninv number of data points in the inviscid region

Nmax maximum number of data points that could possible be in the inviscid region
Nu Nusselt number = 1‘-‘—}:““

p static pressure

Pe static pressure at the boundary layer or wake edge

pr total or stagnation pressure

P pressure surface

Q heat flux

r radius

R, radius of curvature

Re Reynolds number

Re, blade chord Reynolds number = %”-

Re, , local Reynolds number for the onset of transition

Rey momentum thickness Reynolds number = ﬂj—‘

Reg e momentum thickness Reynolds number for the completion of transition
Rey , momentum thickness Reynolds number for the onset of transition

R fitm electrical resistance of the hot film

s blade spacing

Sy standard deviation of the sample of the u data

S skewness;

suction surface
St Strouhal number

STAN5  parabolic boundary layer code of Crawford and Kays [1976]



viii
tg.975 Student’s t score representing all but 2.5% of one tail of the Student’s t

distribution for a given degree of freedom

tmax maximum blade thickness

T. temperature at the boundary layer edge

T.E. blade trailing edge

Tsim temperature of the hot film

u streamwise velocity

ut dimensionless velocity in the inner boundary layer = l:‘—r
U, shear or friction velocity = 1;;'-

Usr maximum backflow velocity

U, velocity at the boundary layer or wake edge

v., velocity at the boundary layer edge near detachment

Un velocity scale based on the maximum shear stress = E
Uret reference velocity

U, velocity scale for the Perry and Schofield [1973] defect law
v normal velocity

%4 velocity

w wake

W() Coles’ universal wake function

z streamwise coordinate;

blade coordinate (see appendix A)

zt dimensionless streamwise coordinate in the inner boundary layer
— Zuc
14
Ty streamwise length of the separation “bubble”
y coordinate normal to the blade surface or across the wake;

blade coordinate (see appendix A)



Be

épr

b4

Ag

Vt

ix
dimensionless coordinate normal to the blade surface in the inner boundary layer
=4
flow angle measured from the axial direction;
Falkner-Skan streamwise pressure gradient parameter
Clauser’s equilibrium parameter
stagger angle
boundary layer thickness (where u = 0.99U,)
displacement thickness = f0°° (1 - -t}‘:) dy
displacement thickness near detachment
energy thickness = f°°° - [1 - ([Jj‘:)z] dy
depth of backflow
deviation angle = 32 — K9
defect thickness
fluid turning or deflection angle = 5, — 3,
dimensionless streamwise similarity variable;
normalized distance across the wake
momentum thickness = [~ * ( - -(‘J‘—e) dy
blade metal angle;
lens half angle;
von Karman’s mixing length parameter (=0.41)
wavelength of the incident laser beams;
length scale in the outer region of a turbulent boundary layer
(in the “mixing length” model)
streamwise pressure gradient parameter = g%
kinematic viscosity (0.150 cm?/sec for air)
apparent scaler turbulent or “eddy” kinematic viscosity

dimensionless similarity variable normal to the blade surface



I Coles’ wake parameter

p fluid density (1.205 kg/m? for air)

o | blade solidity = £

Trmax maximum shear stress

Tw wall or surface shear stress

¢ camber angle = xk; — k2

P streamfunction

w total-pressure loss coefficient = ’—’IJ%’J;V:;—“
ubscri

a location a

b location &

c camber line

cl at the wake centerline

e boundary layer or wake edge

inv inviscid

LFE blade leading edge

m mean flow

meas measured

n data point index

4 pressure surface

s suction surface

TE blade trailing edge

z axial direction

¢ tangential direction

wall at the wall



13 derivative with respect to &
0 no flow
1 mlet

2 outlet

Superscripts
fluctuating quantity;
derivative with respect to 5

— average over the blade passage;

time average



Summary

Measurements have been made of the boundary layers and wakes about a highly loaded,
double-circular-arc compressor blade in cascade. These laser Doppler velocimetry measurements
have yielded a very detailed and precise data base with which to test the application of viscous
computational codes to turbomachinery. In order to test the computational codes at off-design
conditions, the data have been acquired at a chord Reynolds number of 500,000 and at three
incidence angles. Moreover, these measurements have supplied some physical insight into these
very complex flows. Although some “natural” transition is evident, laminar boundary layers
usually detach and subsequently reattach as either fully or intermittently turbulent boundary
layers. These transitional separation “bubbles” play an important role in the development of
most of the boundary layers and wakes measured in this cascade and the modeling or computing
of these “bubbles” should prove to be the key aspect in computing the entire cascade flow field. In
addition, the nonequilibrium turbulent boundary layers on these highly loaded blades always have
some region of separation near the trailing edge of the suction surface. These separated flows, as
well as the subsequent near wakes, show no similarity and should prove to be a challenging test

for the viscous computational codes.



Chapter 1 Introduction

Over the past two decades, techniques for computing complex flows have become increas-
ingly more sophisticated. Steger [1978], Thompson [1980], Rubin and Khosla [1981,1982], Beam
and Warming [1982], and Briley and McDonald [1984] have computed viscous flows at reason-
able Reynolds numbers; Davis and Werle [1981] and Johnston and Sockol [1984] have studied
viscid-inviscid interaction; and Edwards and Carter [1985] and Melnik and Brook [1985] have
computed through separated regions. Further, all computations may now involve complex tur-
bulence models, such as the models by Bradshaw, Ferriss, and Atwell [1967] and Launder, Reece,
and Rodi [1975]. It is desirable that these techniques find their way into the turbomachinery de-
sign process. These numerical techniques are capable of very detailed predictions, but to be used
with confidence, they should be tested against very detailed experimental data under typical flow
conditions. As turbomachinery testing has generally been concerned with overall turbomachinery

performance rather than with the details of the flow field, such data are lacking.

In order to provide the needed data, we have developed a cascade facility in which we can use
a one-component laser Doppler velocimeter (LDV) to measure the periodic, two-dimensional flow

field about a double-circular-arc, compressor blade in cascade. The boundary layer and near-wake
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measurements will provide a very detailed and precise data base for testing new computational
methods. The emphasis of this research will be on understanding the physics of this complex
flow field so that others can focus their attention on the physical phenomena when developing

their computational techniques.

Comparisons of viscous computations are most needed under flow conditions typical of mod-
ern compressor blades-especially under off-design conditions. Therefore, measurements of bound-
ary layers and near wakes have been acquired on a highly loaded compressor cascade blade at
three incidence angles near a chord Reynolds number (Re.) of 500,000. The incidence angles
of 5.0, -1.5, and -8.5 degrees yield boundary layers with a wide variety of characteristics. Inlet
and outlet five-hole probe measurements and blade static-pressure measurements supplement the
boundary layer and near-wake profiles. Surface flow visualization and hot-wire and hot-film mea-
surements complement the transition and separation region data. The physical interpretation
of the data results from a detailed boundary layer and wake analysis. Before describing this
experiment, data, and analysis, we will deacribe previous boundary layer measurements in both

rotating systems and cascades.



Chapter 2 Historical Background

Several researchers have attempted to measure boundary layers on turbomachine blades.
Evans [1978] measured boundary layers at four chord (c) locations at midspan on the suction
surface of a stator blade (¢ = 305.0 mm and Re. = 500,000). The hot-wire measurements were
made in an axial-flow compressor at three time-mean incidence angles on a row of stationary
blades preceded by a row of rotating blades. The stator blades cut the wakes of the rotor blades
and the rotor wake segments are subsequently transported through the stator passages. Since the
wake segments involve low velocity fluid, the boundary layer is subject to a periodically varying
freestream, and the blade is subject to a periodically varying incidence angle. Ensemble-averaged
velocity profiles eliminate the random unsteadiness caused by turbulence. However, the periodic
unsteadiness is preserved. The ensemble-averaged velocity profiles at 30% and 50% chord show
that the boundary layers alternate between laminar and turbulent because of the unsteady flow.
As a result, the time-mean velocity profiles exhibited a larger boundary layer growth than was
expected.

Anand and Lakshminarayana [1978] measured boundary layers on the rotor blades of a

rocket pump inducer using a three-sensor hot-wire probe rotating with the blades. Because of
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imbalances in the radial pressure force and inertia forces in the blade boundary layer, outward
radial velocities develop in a rotor blade boundary layer and inward radial velocities develop in a
stator blade boundary layer. Anand and Lakshminarayana [1978) measured a significant outward
radial component in the boundary layer velocity and found that this radial migration strongly

influenced the chordwise velocity profiles.

Other experimenters have measured the boundary layers on rotor blades of axial-flow fans.
Toyokura, Kurokawa, and Kimoto [1982] used rotating three-hole cobra probes to measure the
three-dimensional boundary layers at six radial sections (c = 80.0 mm to 199.5 mm and Re, =
300, 000 to 500,000). The outward radial flow seemed to retard the predicted regions of transition
and separation. Lakshminarayana, Govindan, and Hah [1982] used rotating miniature “x”-
configuration hot-wire probes for boundary layer measurements at five radial locations (c =152.4
mm and Re. = 280,000 at midchord). Rotating miniature “x”-configuration hot-wire probes
were also used by Pouagare, Galmes, and Lakshminarayana [1985] for numerous boundary layer
measurements (¢ = 123.9 mm to 154.1 mm). In no case could the velocity profiles be very well

resolved.

Walker [1982] made measurements similar to those of Evans [1978]. Walker [1982] used a
hot wire in an axial-flow compressor to measure boundary layers on a stator (¢ = 76.0 mm and
Re. = 30,000 to 200,000) downstream of both a row of rotating blades and a row of inlet guide
vanes. He tried to correct for wall proximity using a method outlined by Wills [1962], but still
had difficulties matching the law of the wall. Low Reynolds number, large adverse streamwise
pressure gradients, and rapidly changing boundary conditions (due to the periodic unsteadiness)

were given as reasons for the absence of a logarithmic region.

Hodson [1983] made hot-wire measurements in an axial-flow turbine at midspan on a rotor
blade (¢ = 114.5 mm and Re. = 315, 000) downstream of a stator row. Once again, the periodic

unsteadiness seemed to cause the boundary layer characteristics to vary between laminar and
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turbulent at some chordwise locations. Profile losses were larger than expected and this too was

attributed to the unsteady flow.

Only one set of blade boundary layer measurements taken with an LDV exists from a tur-
bomachine. Jessup, Schott, Jeffers, and Kobayashi [1985) used a one-component LDV to mea-
sure the boundary layers along the suction surface of a propeller blade (¢ = 141.0 mm and
Re. = 730,000) operating in a water tunnel. They focussed the LDV measurement volume at
a particular point within the water tunnel. Every velocity data point then corresponded to a
particular angular position of the rotating propeller blade. An oscilloscope time sweep in con-
junction with a magnetic pick-up gave the appropriate angular position. After moving the LDV
measurement volume to several axial positions, they extracted the velocity data from measure-
ments close to the blade surfaces. Each data point within a given boundary laysr then contained
anywhere from 4 to 60 particle counts, a number hardly large enough to yield accurate values of
mean velocity and turbulence intensity. Qualitatively, however, their data are quite interesting

and shows regions of laminar, transitional, and turbulent flow.

Boundary layer measurements on turbomachine blades have yet to produce velocity profiles
with enough detail and precision to compare with viscous computational codes. Therefore, our
understanding of the physical nature of these complex, unsteady, three-dimensional boundary
layers is far from complete. These flows are characterized by high turbulence levels, as well as
by periodic unsteadiness caused by the interaction between stationary and rotating blade rows.
“Blockage” effects exist because of the development of the end-wall boundary layers and the
consequent contraction of the mainstream flow. The blade boundary layers are also affected
by centrifugal and Coriolis forces associated with both the swirl and the blade rotation. The
complex blade geometries and the complex flow field, including secondary flows, tip leakage, and

trailing vorticity, make the analysis or measurement of turbomachine blade boundary layers very

difficult.



6
Because of these difficulties, many researchers have sought a simpler geometry which retains
some of the physics of the flow in which to make their boundary layer measurements. A model
that has proven effective in other areas of turbomachinery is the periodic, two-dimensional row
of airfoils, commonly referred to as a cascade. Properly realized, a cascade should eliminate all
of the complexities of the turbomachine except blade curvature, secondary flow, and the effect

of freestream turbulence.

The first attempt to measure boundary layers on cascade blades was made by Peterson
(1958]. He used a three-hole cobra probe to measure blade boundary layers in a compressor
cascade (¢ = 123.8 mm and Re. = 300,000). Several boundary layers were measured on both
the suction and pressure surfaces for three different incidence angles. In an attempt to better
model an actual turbomachine, Peterson [1958] simulated the added diffusion caused by the radial
distribution of axial velocity and the consequent streamline deviation. This added diffusion was
created in the cascade by placing a perforated metal screen downstream of the blades. The
measurements were not taken in the freestream, and therefore, the normal pressure gradient
remains unknown. This lack of information leads to a problem in computing the edge velocity
(which was probably inferred from the blade static-pressure distribution). The data are quite
scattered, especially in the regions near separation, where the cobra probe fails. Peterson [1958]

reported no significant differences between measurements with and without the added diffusion.

Pollard and Gostelow [1967] measured boundary layers on compressor cascade blades (c =
152.4 mm and Re. = 200, 000) with a Pitot tube to examine the effect of leading edge roughness.
Three suction surface boundary layers and one pressure surface boundary layer were measured
on both blades with a smooth leading edge and with a leading edge roughened with polythene
spheres. With no roughness, laminar separation occurred before transition. It appears that
separation of the turbulent boundary layers near the trailing edge would be more likely to occur

when leading edge roughness is present. These results agree with the Preston tube skin-friction
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measurements of Pollard and Gostelow [1967]. The detail and precision of the data are unknown

since no actual data points are given.

Evans [1971] used compressor cascade blades (¢ = 304.8 mm and Re. = 500, 000) for bound-
ary layer measurements taken with a hot-wire anemometer probe. A problem with this data is
that the blade boundary layers were tripped with a wire at 10% chord. Evans [1971] argued that
a turbulent boundary layer over most of the blade would better represent the high turbulence
and unsteadiness levels usually encountered in a turbomachine. Instead, the artificially induced

boundary layer development is rather misleading.

Problems of contamination, corrosion, erosion, and deposition have led to two investigations
that dealt with the effects of surface roughness on cascade blade boundary layers. Bammert
and Milsch [1972] measured blade boundary layers in a compressor cascade (¢ = 180.0 mm and
Re. = 430,000) with four different blade profiles to parametrically change the pitch, camber,
and thickness of the blades. They used emery powder to develop the five roughness grades to be
tested. A turbine cascade (c = 175.0 mm and Re. = 560, 000) was used for the blade boundary
layer measurements of Bammert and Sandstede [1980] where four roughness grades were tested.
Both investigations used a flattened Pitot tube which allowed measurements to be taken very
close to the blade surface. Bammert and Sandstede [1980] used a hot-wire anemometer to confirm
the measurements made with the flattened Pitot tube. The studies showed that increasing surface
roughness led to increases in both momentum thickness and skin friction and a forward shift of

the regions of transition and separation.

Meauzé [1979] used a transonic compressor cascade (¢ = 94.9 mm, Re. = 1,660,000 for
M; = 0.70, and Re. = 2,120,000 for M; = 0.85) for blade boundary layer measurements.
He used total-pressure probes to measure suction surface boundary layers for two inlet Mach

numbers and four incidence angles. The flow recompression on the highly cambered blades results

in laminar flow separation and subsequent turbulent reattachment. The thin laminar boundary
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layers upstream of this separation “bubble” were difficult to measure, so that the total-pressure

profiles were only measured for turbulent boundary layers.

The trailing edge boundary layers on both the suction and pressure surfaces of a compressor
cascade blade (¢ = 203.2 mm and Re, = 478,000) were measured with a hot-film probe by
Hobbs, Wagner, Dannenhoffer, and Dring [1982]. The two profiles are very detailed; they show
a nearly separated profile on the suction surface, and also a pressure surface profile typical of

favorable pressure gradients.

Hodson {1983] has presented blade boundary layer data measured in a turbine cascade (c=
114.5 mm and Re. = 315, 000) with a hot-wire probe. Although no data points are reported, the
velocity profiles on the suction surface show laminar flow until 78% chord followed by laminar

separation and no reattachment.

Finally, in one of a growing number of experiments designed to evaluate three-dimensional
flow effects, Schuls and Gallus [1988] measured the suction surface boundary layers of a compres-
sor blade in an annular cascade (c = 62.6 mm and Re, = 390, 000). Their hot-wire measurements
showed that the initially laminar boundary layers transitioned to turbulent near midchord. At
midspan, the resulting turbulent boundary layers remained attached when the incidence angle
was 2.2 degrees. Closer to the hub, separation occurs over the final 30% chord. Measurements
at an incidence angle of 7.2 degrees show this suction surface/hub corner separation covers a
larger extent of span and chord. Blade static-pressure measurements, flush-mounted hot-film

measurements, and flow visualization help illustrate this three-dimensional feature of the flow.

With one exception, all prior investigations have used hot-wire or pressure probes to make
boundary layer measurements.! There are three potential problems: first, a periodic two-

dimensional cascade flow is difficult to establish and the probe may distort it; second, some

! Jessup, Schott, Jeffers, and Kobayashi [1985] did make boundary layer measurements using
the LDV technique. Unfortunately, their data points within their propeller blade boundary
layer did not contain an adequate number of particle counts.
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boundary layers are likely to be small compared to the probe dimensions; and third, separated
regions, if present, cannot be conveniently studied. For these reasons, the current study used
the LDV technique.? The need for optical access to the blade row for the LDV technique places
some unique restrictions on the types of flow controls that may be employed in the cascade.
In particular, continuous blade pack suction to restrict the side wall boundary layer growth is
no longer possible. Therefore, before discussing the LDV results, we will describe the cascade

facility and flow.

2 Elazar and Shreeve [1989] are in the process of completing two-component, LDV measure-
ments of boundary layers on a controlled diffusion blade in cascade.
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Chapter 3 Cascade Facility

In order to make LDV boundary layer measurements on a highly loaded cascade compressor

blade with a Re. near 500,000, we needed to modify the existing cascade facility. A description

of this facility is given here.

Wind Tunnel

The cascade wind tunnel has a 0.37 m by 0.64 m test section with a maximum air speed of
approximately 35 m/sec. Tunnel turbulence control is through a honeycomb with a 3.18 mm cell
size, several settling screens in the diffuser section, and a nine-to-one contraction. Over the speed
range of 24-35 m/sec, the tunnel operated with a freestream turbulence level of 0.18% + 10% as

measured by a hot-wire anemometer. Figure 1 shows a schematic of the open return facility.
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Test Section

The blade section used in the tests is a compressor blade designed at the NASA Lewis
Research Center (see Sanger [1980]). The blade section is a double-circular-arc blade with 65
degrees of camber,® a 20.5 degree stagger angle, a solidity of 2.14, and a 228.6 mm chord length.
The five cascade blades were made of aluminum and were anodised black to minimise laser
reflections. Both the leading and trailing edges were machined to a 0.9144 mm radius. Camber
line and thickness relationships necessary to construct the blades (or for computation) are given
in appendix A. To insure proper alignment, the blades were carefully positioned in two inserts—
aluminum and Plexiglas! (on the optics side)-which were in turn mounted to the plywood walls
of the cascade test section. The test section is shown in figure 1 and some key aspects of the

blade geometry are shown in table 1.

As current computer codes assume a two-dimensional, periodic cascade flow, one must take
data in such a flow field for it to be of use. Two-dimensionality, of course, implies that the
velocities and angles of the flow are substantially the same in spanwise planes, while periodicity
supposes that velocities and flow angles show only minimal variations from blade passage to blade
passage, both upstream and downstream of the blade row. For the five-bladed cascade used here,
downstream periodicity was taken to mean periodicity over three blade passages centered at the
minimum velocity point of the middle blade wake. In order to satisfy the condition of continuity
for a two-dimensional, incompressible cascade flow, the axial velocity must be held constant

throu'ghout. From a practical standpoint then, flow periodicity and two-dimensionality could

3 The blade was designed to show some trailing edge separation of the suction surface turbulent
boundary layer at gero incidence angle. With the available cascade geometry, this leads to
a large camber angle.

4 A glass insert was later placed within the Plexiglas to improve the LDV signal.
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Table 1. Blade geometry

c 228.6 mm
s 106.8 mm
tmax 12.5 mm
TLE 914.4 um
TTE 9144 um
o 2.14

AR 1.61

¥ 20.5°

Ki 53.0°

Ko -12.0°

¢ 65.0°




14
be determined, for a uniform inlet flow, by examining the axial-velocity ratio and flow angles
determined at the exit plane. This was quite useful as these outlet measurements could be made

simply and quickly, thus allowing us to check the cascade flow daily.

Two-dimensionality and periodicity are normally controlled in cascades by employing blades
with a large aspect ratio or by using continuous suction over the entire blade pack.® Since we
required a rather large chord length to obtain a value of 500,000 for Re., we could only use
five blades within the cascade test section and our aspect ratio was only 1.61. Also, continuous
suction was not possible in the current experiment because of the need for laser access. Alter-
nate flow control was examined in some detail. Returning to figure 1, we note that there are
many potentially useful flow controls. That is, it is possible in principle, to control the flow by
adjusting the position of the lower false blade, the upper false blade, the variable diffuser, and
the tailboards (as well as the relative position of the tailboards), or by adjusting the magnitude

(and distribution) of the top suction, side suction, and lower and upper channel suction.

In practice, blade passages adjacent to the lower and upper false blades were each set at
nominally one blade spacing. The diffuser was set to minimize the flow angle at the splitter
plate. Lower channel suction was not required while top and upper channel suction were provided
through the same 5 hp blower, which was run at full power. A baffle system was used to adjust
the relative amounts of suction provided at the top and upper channel, and the baffling along
with slight adjustments to the upper false blade position were used to insure a horizontal flow at
the upper false blade leading edge. The tailboards were most useful in controlling the relative exit
angles of the flow; that is, they could be adjusted so that the exit angle across the cascade in a
blade-to-blade direction was constant outside of the wake regions. The periodicity, however, was
found to be most influenced by the amount and distribution of the sidewall suction. Side suction

was provided by a 10 hp centrifugal blower operated at full power. Side suction distribution was

5 Note that the control here seems to be over the growth of channel corner disturbances. An

attempt to use a slightly divergent wall, commonly used to compensate for boundary growth,
failed.
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controlled by a complex baffling system. Six suction ducts were located at a half-blade spacing on
either side of each of the blades. Each of the individual ducts had a separate baffle control, and
was adjusted by the simple but tedious procedure of changing a baflle position and then examining
the resulting outlet low. Presumably, the control of side suction distribution controlled the size
of the sidewall boundary layer at its intersection with the blade pack leading edge line—in a sense
controlling the virtual origin of the corner disturbances. Control of sidewall suction distribution
then implied a control of the “blockages,” caused by corner disturbance contamination, of each
blade passage individually and hence control of the individual blade angles of attack. Once set,

the stability of the periodicity obtained on a day-to-day basis was excellent.
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Chapter 4 Experimental Technique

The measurements of boundary layers on cascade blades required an LDV system specifi-
cally adapted to the cascade facility previously described. In addition, several other measuring

techniques were required for supplementary measurements.

Pressure Measurements

Static-pressure taps, Pitot-static probes, and five-hole probes were used in conjunction with
pressure transducers to measure values of static and stagnation pressure within the cascade flow
field. The five-hole probes are capable of resolving the three components of velocity as well as the
relative yaw and pitch angles of the flow. Treaster and Yocum [1979)] give a complete description
of the five-hole probes employed in this study. The probes were calibrated at a speed of 30.5
m/sec in an open jet air facility over the range of pitch and yaw angles of +30 degrees to —30
degrees. Reynolds number effects on the probes have been shown to be small (see Treaster and

Yocum [1979]).
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A nearly real-time data acquisition/reduction system was used for the pressure measure-
ments. The separate pressure transducer signals as well as a test section temperature signal were
scanned by a multiplexer/scanner, smoothed on a multimeter through a 100 cycle (1.667 sec)
integration, and sent for reduction to a VAX 11/782. Pressures, velocities, and flow angles could

be monitored during each test.

Spanwise velocity profiles were measured approximately 36 mm upstream of and parallel
to the leading edge line with a five-hole probe and five individual pressure transducers. These
inlet surveys were repeated at several blade-to-blade locations, covering a distance of two blade
spacings centered near the center blade leading edge. After using these measurements to check
the periodicity and two-dimensionality at the inlet, we obtained values of B, 1, p1, Py, V1, and
Vz averaged over the two blade spacings. The averaging was necessary since we measured some

streamline bending due to the presence of the blades.

Outlet five-hole probe surveys were taken at midspan in the blade-to-blade direction covering
all the blade passages. The outlet profiles were measured parallel to the trailing edge line and
either 31.9% or 52.6% chord downstream of this line. A Pitot-static probe was placed 73 mm
upstream of the blade pack leading edge and protruded approximately 50 mm into the flow—well
outside of the side-wall boundary layer. The probe was located at a position where V] was
roughly equal to the average of the inlet velocities measured with the five-hole probe. Using
this inlet Pitot-static probe, an outlet five-hole probe, and seven individual pressure transducers,
we measured the periodicity of the outlet-specifically observing the variation in axial-velocity
ratio and flow turning angle. After verifying the periodicity of the outlet flow, we repeated
the outlet surveys at other spanwise locations in order to check the two-dimensionality of the
outlet flow. Next, we averaged the five-hole probe measurements at midspan over three blade
passages, centered at the minimum velocity point of the center blade wake. If the resulting

average axial-velocity ratio lay within 3% of 1.00, the flow was considered adequate. We then
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obtained blade-passage averaged values of Bz» 84, D2y PTo, and V,. Measured values of total-

pressure loss coefficient, @, and static-pressure rise coefficient, Epz could also be obtained.

A five-hole probe was also used to make detailed measurements of the far wake. The five-hole
probe was traversed across the center blade wake repeatedly to give six separate traverses—yielding
the average value, u, and the standard deviation of the sample, 5., at each location, y. For sample

gizes less than 30, we use the Student’s t test to obtain 95% confidence levels,

Sy
U + —t ,
N -1 0.975

where N is the number of samples. Tabularized data for the Student’s ¢ test yield tg 975 = 2.571

when the number of degrees of freedom (N — 1) is five.

Blade static-pressure distributions were measured using blades instrumented with static-
pressure taps and corresponding conveying tubes. Ideally, blade static pressure would be mea-
sured on the center blade of the cascade—the one intended for LDV measurements-but the two
types of measurements had somewhat conflicting requirements. That is, an aerodymamically
smooth (0.8 yum estimated surface roughness) surface was desired for the LDV surveys, while the
conveying tubes required for the pressure measurements inevitably led to a somewhat roughened
surface. To work around this problem, we instrumented the suction surface of the blade above
the center blade and the pressure surface of the blade below the center blade with 24 pressure
taps each; we also instrumented the center blade pressure and suction surfaces with 6 and 7
taps, respectively. If the flow was periodic, the pressure distribution could be obtained from the
adjacent blades as well as from the center blade. After verifying this periodicity by comparing
the results of the pressure distributions from the adjacent blades against the data from the center
blade, we interchanged the instrumented center blade with an uninstrumented blade for the LDV
surveys. Data acquisition and reduction, for the static-pressure distribution, were similar to that
described for the five-hole probe data with the exception that a scanner valve was used to switch

the pressure data, hole-by-hole, to a single transducer during data acquisition. During the course
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of the experiment, a few of the 24 pressure taps on each surface were found to give erroneous

results and these taps were not used any further.

Surface Flow Visualization

Adopting the chemical sublimation method used by Holmes and Obara [1982] and Obara
[1988], we used surface flow visualization to help determine the location of the transition and
separation regions. Gray [1944] developed the first chemical sublimation method for indicating
transition for his low-speed wind tunnel testing. The method involves coating the test surface with
a very thin film of a volatile chemical solid. In regions of higher shear stress, the increased mixing
implies an increase in the mass transfer coefficient which produces greater rates of sublimation.
Holmes and Obara [1982] and Obara [1988] suggested the use of acetone as the solvent and

naphthalene as the chemical solid when testing at Mach numbers less than 0.15-0.20.

An air brush was used to coat the blade with a mixture of naphthalene and acetone in
a solid-to-solvent volume ratio varying from 1:8 to 1:4. When subjected to a flow, the white
particles sublimated in regions of high shear stress exposing the black blade. The white particles
remained in regions of low shear stress. Preliminary tests determined the run time sufficient to
set up the visualization pattern-ideally, a stable pattern existed during an interval of several
seconds. For each run, the center blade was removed, the naphthalene/acetone mixture was
applied, and large particles were dusted off. The blade was then replaced in the cascade and
removed after the predetermined run time, allowing the sublimation pattern to be photographed.
A sufficient number of tests were taken so that a meaningful mean and Student's t test deviation

could be obtained.

Later in the study, we also used an oil film method to visualize the flow pattern close to the

blade surface. If a very thin coat of oil covers the blade surface, the shear stress within the flow
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will carry the oil with it. In most parts of the flow, oil streaks will be left behind, approximating
the “wall streamlines.” In regions of separation and reattachment, the streamwise pressure
gradient strongly affects the oil flow by decelerating the flow, thickening the oil ilm, and causing
the oil film to pile up to form a steep ramp. Thus, the oil film method gives a good indication of

the location of separation and reattachment as well as the flow direction elsewhere.

The blade was painted with a thin film of (ashless dispersant) aviation oil. This oil had
the advantage that it was naturally florescent when exposed to the ultraviolet light of a black
lamp. The flow pattern could be viewed in its transient and steady states while the tunnel was
operated. Afterwards, we removed the blade and photographed the steady-state flow pattern

under a black lamp before gravity caused the oil pattern to run.

Hot Wires and Hot Films

A continuous flow measurement can be made with the use of heated sensors. Within the
flow, we can use a probe supporting a fine wire or a thin metallic film heated with an electric
current. The voltage across the hot wire or hot film is a function of the flow velocity. Hot wires
were used to measure the freestream turbulence within the cascade. The cylindrical wires were

calibrated in an open jet air facility.

To obtain a nearly nonintrusive, continuous measurement of the wall shear stress, we can
use hot films flush mounted to the blade surface. A current heats the thin metallic film that is
baked on to a substrate which is chosen for its poor heat conduction. The probes are sensitive
to cooling through convective heat transfer. Flush-mounted hot films are used rather than flush-
mounted hot wires because the films are wide enough to allow the thermal boundary layer to

develop over their thickness whereas the wires are too thin. For a flush-mounted hot film in a
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laminar boundary layer, Ludweig [1950] and Liepmann and Skinner [1954] derived a relationship

for the Nusselt number under forced convection,

ham Qlim

Nu = == = k(Thim — To)

o (‘rw)% .

In an incompressible flow, Liepmann and Skinner [1954] showed that this relationship can be
extended to turbulent boundary layers when the thermal boundary layer thickness is smaller than
the viscous sublayer.® The hot film serves as one arm of a constant temperature anemometer’s
Wheatstone bridge. Since the heat flux, @, changes with changing wall shear stress, 1, the
anemometer changes the current, Z, passing through the hot film to ensure a constant film
resistance, Raim, and thus a constant film temperature, Th)m. Therefore, the electrical power of

the hot film must equal the rate of heat transfer away from the film,
QAfim = I’Raim -

We can equate the heat flux from these two equations and multiply by the constant hot-film

resistance to obtain:

(ru)¥ = 182 + 5.

Thus, the shear stress to the one-third power is proportional to the square of the voltage, £, across
the hot film. The constant ¢, accounts for other forms of heat loss such as the heat transfer from
the metallic film to the substrate. Liepmann and Skinner [1954] also show that the streamwise
pressure gradient may affect the relationship between the heat flux and the shear stress. For
most flows, however, this effect may be neglected. Bellhouse and Schults [1966,1968| validated

this relationship experimentally for laminar, turbulent, transitional, and separated shear layers.

The 0.4 mm by 0.9 mm platinum hot films (with a 2.0 um quartz substrate) were flush
mounted to the blade surface using epoxy, with the shorter distance aligned in the direction

of the flow. Constant temperature anemometers were used with an overheat ratio of 1.6. The

6 See chapter 6.
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probes were not calibrated to obtain ¢, and c2. However, immediately before each measurement,

we measured the voltage across the hot film without any flow to obtain
0= clgg + ¢ .
Then, after measuring the voltage with flow, we obtained
(o)} = a1 (€2 - &) .

An assumption could be made that ¢; was similar for each probe and by setting c; equal to one,
we could compare the individual probe measurements to obtain trends in the behavior of the
shear stress at different locations. The assumption does not affect the trends of the data, but
only observations based on the magnitude of the shear stress. Remember, however, that the heat
transfer from the hot films with flow is governed by forced convection while the heat transfer

from the hot films without flow is governed by free or natural convection.

Later, after measurements and calculations gave us an estimate of the time-average shear
stress at the blade surface, we found we could use these estimates to yield a reasonable ap-
proximation of ¢;. This rough calibration allowed us to obtain estimates of both the trend and

magnitude of the data.

Laser Doppler Velocimeter

In a nonintrusive manner, a laser Doppler velocimeter measures the local, instantaneous fluid
velocity by detecting the Doppler shift of scattered light from an injected seed particle in the
flow. Of course, this technique will only work if the seed particle is small enough to follow a fluid
pathline. After a laser emits a singular-frequency light beam, this beam is split in two and the

resulting beams are focused at the desired measurement location. The intersecting beams from
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this dual beam technique form an ellipsoidal measurement volume consisting of an interference
fringe pattern. As the light is scattered off a seed particle within the measurement volume, the
frequency of the scattered light changes because of the particle motion. This Doppler frequency
shift is linearly proportional to the particle velocity. The scattered light from the two incident
beams at two different angles is focussed on a photodetector and mixed to produce a difference
or heterodyne frequency which is the Doppler frequency. We can also interpret this dual beam
technique in terms of the interference fringes. As a seed particle passes through the light and
dark regions of the interference fringe pattern, the photodetector detects a modulation of light
intensity at a frequency equal to the Doppler frequency. By knowing the wavelength of the
incident laser beams, A, the half angle of the beams exiting from the converging lens, «, and the
Doppler frequency, fp, we can determine the fringe spacing and thus the particle velocity normal

to the fringe pattern,

_ JfpA
~ 2sin(k)

Since the mixing process in the photodetector gives us a positive Doppler frequency which
is the difference of two other frequencies, we cannot distinguish the direction of the seed particle.
To eliminate this directional ambiguity, we upshift the frequency of one light beam by 40 MHz
with a Bragg cell. This frequency shift occurs when the light beam enters the Bragg cell and is
diffracted by travelling acoustic waves. A prism then returns the beam to its original direction.
Essentially, the upshift causes the interference fringes to “move” upstream at 40 MHz relative to
a stationary seed particle. Later, an electronic downmixer can downshift the collected Doppler
signal to achieve the desired frequency shift, fg. The processed signal will still yield a positive
frequency, but before computing the velocity, we subtract fs. This gives us the true Doppler

frequency with a sign corresponding to the direction of the particle velocity.

Before processing the photodetector signal, we can attempt to improve the signal-to-noise
ratio-which is degraded by electrical noise and the detection of light from extraneous sources

(mostly reflections). One technique to increase the signal-to-noise ratio involves decreasing the
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measurement volume by expanding the diameter of the incident laser beams. We can then
use a low-pass filter to omit any high-frequency noise and a high-pass filter to omit any low-
frequency noise and the low-frequency component or “pedestal” produced from the light intensity

modulation.

After the photodetector converts the changes in light intensity into electrical signals, we must
process these electrical signals to obtain the flow velocity. If the signal-to-noise ratio is sufficiently
high, we can employ a counter processor, which is desirable since this type of signal processor
can operate when the rate at which seed particles pass through the measurement volume is either
high or low. After converting the electrical signal into pulses for digital processing, the counter
processor decides if the pulses have exceeded some predetermined threshold and checks the time
for the cycles within the Doppler “burst.” The counter processor can then validate whether only
a single seed particle has passed over the minimum number of interference fringes and reject any
false data. Finally, the digital output signal can send the validated data to a digital computer

for further data analysis.

All blade boundary layer and near-wake measurements were made using a single-component
LDV. For all the LDV measurements, a specially designed traversing mechanism was used which
matched the arc of motion of an optics cradle to that of the blade curvature (two arcs were
employed, one for each of the pressure and suction surfaces). All measurements were made in
the plane of the local blade normal. Translation of the optics cradle normal to the blade could
be accomplished in step intervals as small as 0.0254 mm. Prior to the LDV measurements, a

reference distance was established by focusing the LDV measurement volume on an insert which
securely fit over the center measuring blade. Narrow lines had been etched on the insert {on
arcs matching the blade curvature) to be known distances from the blade surface. Repeatability
in establishing a measurement reference was estimated to be 20.05 mm, and this uncertainty is

probably the major source of scatter in the velocity data.
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A five-watt, Spectra-Physics, argon-ion laser was used for the measurements. Power on
the blue line (488 nm wavelength) ranged between 0.5 watts and 0.7 watts on a day-to-day
basis. Standard TSI backscatter optical components were used: The 371.3 mm focusing lens was
chosen to allow the measurements to be made at the blade midspan. Later, we replaced this
lens with one having better optical properties (and a 372.0 mm focal length). The ellipsoidal
measurement volume was reduced through the use of a (2.71:1) beam expander; the predicted
measurement length in the normal to the blade direction was 33 yum. While this length was small
when compared to the length scales of the measured turbulent boundary layers, we shall show
that it is roughly half the size of the displacement thickness of the smallest measured laminar
profile. Where appropriate, optical shifting at 5 MHz was employed. Note that to measure
close to the blade surface, we tilted the optical cradle at an angle of roughly 1 degree. Silicon
carbide particles having a mean diameter of 1.5 um were used for laser seeding. In an attempt
to maintain a uniform distribution, we injected the silicon carbide particles well upstream of the
measurement station. The particles were suspended in a “cloud chamber,” which was constructed

for this study, and were injected into the tunnel by a small overpressure.

LDV data acquisition and reduction was accomplished by using a direct link to a VAX 11/782
computer. Software allowed selection of the focusing lens half angle, the laser beam wavelength,
the frequency shift, the minimum number of cycles employed in the calculation (8 here), and
the number of particle counts per run. Initial output was in the form of a velocity histogram.
Minimum and maximum velocity limits could be set by two cursors to eliminate obvious noise
from the distribution. Final output was mean velocity, local turbulence intensity, and the percent
of particle counts employed in the calculations. For most of the profiles measured, the skewness
and kurtosis of the distribution were also calculated. The percentage of particle counts employed
in the calculation may be used as an indicator of signal-to-noise ratio. At least 98% of the total

particle counts were used for measurement stations in the boundary layer; at least 95% were
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employed for points in the freestream (the difference in percentages reflects the fact that fewer

overall points were used at the freestream locations).

For a counter processor, employed in a highly turbulent flow, the calculation of mean velocity
and turbulence intensity may not be straightforward. McLaughlin and Tiederman [1973], Hoessel
and Rodi [1977], Giel and Barnett [1979], Edwards [1981], Edwards and Jensen [1983), Johnson,
Modarress, and Owen [1984], and Stevenson, Thompson, and Craig [1984] have all discussed the
question of velocity bias in a highly turbulent flow. As pointed out first by McLaughlin and
Tiederman [1973], the problem arises because more high-speed particles than low-speed particles
arrive in the measurement volume during a given measurement interval. A related problem,
termed incomplete signal bias by Stevenson, Thompson, and Craig, [1984], can be eliminated by

employing a sufficiently high frequency shift.

McLaughlin and Tiederman [1973] describe a correction for the phenomenon (with uniform
seeding)-but it requires complete velocity vector information. A more practical one-dimensional
correction is also given, but this correction tends to overestimate the error for local turbulence
intensities >20%. Edwards [1981] shows that the biasing error can be made negligibly small
for the case of a saturated data handling system (taking data at a fixed rate set by the slowest
component of the system) by taking the particle density equal to the seeding rate (this assumes
a validation circuit for the system). Stevenson, Thompson, and Craig [1984] used equal time
interval sampling in a very highly seeded mixing layer as a bias-free test case. As pointed out by
Edwards and Jensen [1983], however, very high seeding rates may open the door to other types of
errors, for example, by reducing the actual number of statistically independent samples used to
form the velocity statistics. Moreover, a very high seeding rate may be very difficult to achieve
in precisely those regions in which the bias is expected to be high. Often, in fact, a counter

processor is chosen over a tracker processor because of its ability to act at very low seeding rates.

The bias question is obviously quite complex, and a consensus opinion on how to correct

data is still lacking. Some issues, such as non-uniform particle seeding, of interest particularly
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in air flows, have not yet been the subject of detailed studies (see Hoessel and Rodi [1977] for
instance). Giel and Barnett [{1979] conducted an experiment favorable to obtaining statistical
bias, but no consistent bias was evident-thus further obscuring the bias question. In the current
study, we employed simple arithmetic averaging. We note that both Mclaughlin and Tiederman
[1973] and Johnson, Modarress, and Owen [1984] show that the overestimate of the mean velocity
goes roughly quadratically with turbulence intensity, being 5% for a local turbulence intensity
near 20%, and being 12% for a local turbulence intensity near 35%. These numbers should be
borne in mind not only when evaluating the data presented here, but also when evaluating any

measurements made in highly turbulent flows. The mean velocity here was taken as

N
1
iz =3 u
n=1

=|

and the variance as
2 1
u’ = N Z(un - u)z.
n=1

Local turbulence intensity was taken as v u’z/u and turbulence intensity was taken as Vu'?/U,,

where U, is the edge velocity of the boundary layer or wake.

For many of the boundary layers measured, we monitored the skewness and kurtosis (or
flatness) with the idea that a change of shape from the classical distribution in the boundary
layer might signal significant velocity bias. No such deviations were observed. We calculated the

skewness and kurtosis from

1 X
- 3
5= Nu’® Z_:(U-n ¥
n=1
and
1 X
- Y
K = Nt Z:(un u)* .
n=1
The skewness is a measure of the symmetry of the distribution. For a symmetric distribution, the

gkewness is zero. The kurtosis is a measure of the concentration of values away from the mean (in

the tails of the distribution). For a Gaussian distribution, the kurtosis is three. Figure 2 shows
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the velocity data from six individual experiments along with some typical velocity histograms.”
Moving from the freestream to the blade surface, we calculated the histogram skewness values as
0.69, -4.19, -0.77, -0.09, 0.34, 1.24, and 3.22 and the histogram kurtosis values as 4.69, 24.5, 3.09,
2.77, 2.88, 7.63, and 42.49. In the freestream, the velocity histogram is quite narrow. Just within
the turbulent shear layer, the flow becomes intermittently turbulent. While the velocity usually
takes on the maximum value set in the freestream, occasionally, one measures seed particles with
a smaller velocity-leading to a negatively skewed histogram with a large kurtosis. In fact, one
may find it difficult to differentiate between the actual data in the tail of the histogram and
any noise-making this location difficult to measure and requiring a reduction in data rate. As
measurements are made closer to the blade surface, the skewness reaches a minimum and then
increases towards gero while the kurtosis reaches a maximum and then decreases towards three:

A Gaussian distribution is finally obtained as shown in figure 2.

The data here followed the trends shown by Klebanoff [1954], Charney, Mathieu, and Comte-
Bellot [1976], Reichert and Azad [1979], Karlsson [1981], and Simpson, Chew, and Shivaprasad
[1981b]: The velocity distribution was Gaussian in all regions except where y was between 70%
and 120% of the boundary layer thickness (where S < 0.0 and K > 3.0). For attached turbulent
boundary layers, one can measure velocity histograms with S > 0.0 and K > 3.0 where y is
less than 10% of the boundary layer thickness. Here, the blade surface prevents the histogram
from obtaining values of velocity less than zero. For the detached turbulent shear layer shown
in figure 2, positively skewed velocity distributions can occur farther from the surface. Also, one
can measure bimodal velocity distributions when the time-average velocity away from the surface

18 near zero.

Experience has shown that quite satisfactory repeatability of the mean velocity and turbu-
lence intensity can be guaranteed in boundary layer flows by using 1000 particle counts in regions

in which the local turbulence intensity exceeds 5%. In regions of local turbulence intensity of

* This data were taken at 90.3% chord on the suction surface for i = —1.5 degrees.
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less than 5% but more than 2%, 500 points are used, while 200 points are used in regions of
less than 2%. More particle counts would be necessary to obtain more accurate values of the
skewness and kurtosis. At each chord position, profiles were defined by statistically treating the
data for six individual experiments. Six experiments were chosen as the statistics found from six
experiments showed less than 1% scatter in the freestream data. Error bands, presented on the

LDV data plots, represent 95% confidence levels as determined by a Student’s ¢ test.
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Chapter 5 Experimental Results

With the use of the experimental technique just described, we measured the flow field about
the blades for incidence angles of 5.0, -1.5, and -8.5 degrees. The incoming flow for all three
incidence angles contained a freestream turbulence level of 0.18% + 10% as measured with a
hot wire. For this freestream turbulence level, we now present the measurements for all three

incidence angles. Detailed analysis of the data is given in chapter 7.

Flow Field for a 5.0 Degree Incidence

The flow field through the cascade of double-circular-arc compressor blades was established
at an incidence angle of 5.0 degrees and a Re. of 505,000 with an observed +1% variation on a
day-to-day basis. The average inlet static and total (zage) pressures were p; = —414.3 Pa and

pr, = 246.1 Pa giving an inlet velocity of 33.11 m/sec. Figure 3 shows a typical outlet flow profile
and the equivalent turning angles—as measured with a five-hole probe 52.6% chord downstream

of the blade trailing edge. The periodicity of the flow is clearly excellent. The flow turning
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angle averaged across the three center blade passages was 54.0 degrees. At this downstream
location, different spanwise measurements showed a two-dimensional core flow at least 50 mm
wide where the influence of the corner disturbances had not yet been felt. Table 2 summarises
the flow conditions for all three incidence angles while figure 4 shows the inlet and outlet velocity

triangles.

Measurements have been taken to help quantify the losses in total pressure across the cascade.
Additional quantities can be computed to compare with design limits on diffusion rate and static-
pressure rise within the cascade. The difference between the blade-passage-averaged flow angle in
the outlet flow and the exit blade “metal” angle is the deviation angle. For a 5.0 degree incidence,
the deviation angle was measured to be 16.0 degrees, which is very large.® Nondimensionalizing
by the inlet dynamic pressure, the blade-passage-averaged total-pressure loss coefficient, w, was
0.151 and the blade-passage-averaged static-pressure rise coefficient, sz, was 0.463. Note that
the static-pressure rise coefficient was probably affected by the positioning of the tailboards. An

equation for the total-pressure loss coefficient was developed by Lieblein and Roudebush [1956]

7= (&) iy 28] {1 - [l ()

A value of 0.172 for @ can be calculated from this equation using the flow parameters measured

where

in the outlet flow.® The loss in total pressure across the cascade is related to the amount the
flow is diffused through the blade passage. Lieblein, Schwenk, and Broderick [1953] derived a

diffusion factor where

— Vo Vo, — Voo _ - cos(B1) + sin(8;) — cos(f1) tan(B,)
i 20y cos(8,) 20 '

8 Although large, a 16.0 degree deviation angle is not unexpected, since the blades are very
highly loaded and the design condition called for a zero degree incidence angle.

9 This value of & was computed using the values of momentum thickness (¢) and first shape
factor (H1z) calculated in the far wake at 152.6% chord. Details of the calculations are
shown in chapter 6 on the method of analysis.
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Table 2. Flow conditions

g

Re.

33.11
17.59
22.88
17.55

5

0.151¢

5.0°

58.0°

4.0°
39.9°
54.0°
16.0°

m/sec
m/sec
m/sec
m/sec

0.172¢

0.463
0.952
0.658

05,000

32.88
20.48
24.38
20.47

-1.5°

51.5°

2.1°
32.9°
49.4°
14.1°

m/sec
m/sec
m/sec
m/sec

0.094¢
0.071°

0.473
0.821
0.555

501,000

-8.5°

44.5°
-0.6°
25.9°
45.1°
11.4°

33.28 m/sec
23.74 m/sec
26.39 m/sec
23.74 m/sec

0.028¢
0.024°
0.018¢

0.421
0.956
0.452

507,000

a

measured values

® values computed at 131.9% chord

¢ values computed at 152.6% chord
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Designers normally place a limit between 0.5 and 0.6 on D when designing a blade row
(depending upon span location). This limit is based on a large nuraber of cascade performance
tests. Values of D greater than this limit result in large increases in total-pressure loss because
the larger amount of diffusion causes the blade boundary layers to separate. Using a blade-
passage-averaged value of the outlet flow angle allows a value of 0.658 for D to be computed.

This value of D indicates a risk of separation.

The blade static-pressure distribution appears in figure 5. The vertical lines in figure 5
indicate the locations at which LDV surveys were made. Integrating this distribution gives a lift
coefficient of 0.952. The 5 degree incidence angle dramatically affects the pressure distribution.
At the leading edge on the pressure surface, for example, the large positive incidence angle
results in a strong acceleration which promises a region of laminar flow. In the region from 6%
chord!® to 68% chord, the flow is subjected to a mildly adverse gradient so that the onset of
transition might be expected in this region. The subsequent favorable gradient, however, makes
the eventual complete transition to turbulence problematic. The very large adverse pressure
gradient at the leading edge of the suction surface implies a leading edge separation. This
gradient becomes less severe with downstream distance and vanishes entirely near 80% chord.
No pressure gradient is evident over the last 20% chord which indicates a possible separation
region-that is, a region which cannot sustain a streamwise pressure gradient. The rapid and
continuous changes of pressure on both the pressure and suction surfaces offer little hope of
finding equilibrium boundary layers. In addition, the inviscid velocity field within the blade
passage will be under the influence of a normal pressure gradient, and one cannot anticipate a

constant freestream velocity region.

The chemical sublimation method showed signs of transition on the pressure surface and

separation near the trailing edge of the suction surface. Evidence of two-dimensionality was

19 Wherever the term “% chord”appears, it should be understood to mean the percent of
surface distance (or arc length, since the surfaces are circular arcs) for the surface under
discussion.
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much more apparent in the suction surface separation pattern than in the pressure surface tran-
sition pattern. This is perhaps an indication of the importance of the local surface roughness
in determining the transition point for the very thin boundary layers encountered. With 95%
confidence, separation was found to occur at 65.5% chord on the suction surface with a deviation
of £3.5% chord. Transition was found on the pressure surface to be at 64.2% + 3.9% chord to

the same level of confidence.

Boundary layer measurements were made at 11 chord locations on the pressure surface of the
center cascade blade. To help interpret these velocity profiles, figure 5 shows the measurement lo-
cations along with the pressure distribution. The combination of continuously changing pressure
and moderate surface curvature signals a complicated nonequilibrium flow field. The measured
- pressure surface boundary layers are shown in figure 6. The blade-to-blade pressure gradient
affects the inviscid region of each profile. This pressure gradient varies from a strong, nonlinear
gradient near the leading edge, where the streamlines have a large curvature, to a nominally gero
gradient near the trailing edge. As previously noted, each profile was measured six times and
the symbols in figure 6 represent velocity data averaged over the six tests. The error bands give
95% confidence levels as determined by the Student’s t test. These error bands are quite small,
particularly in the inviscid regions. The exception appears at 2.7% chord where the boundary
layer is so small that the LDV could only nominally penetrate the layer, and correspondingly,

the resolution is poor.

Suction surface boundary layers were taken at 11 chordwise locations on the center blade.
Figure 5 shows these chordwise locations as well as the static-pressure distribution. The measured
suction surface boundary layers are presented in figure 7. The inviscid regions show the effects of
the normal pressure gradient. Note how the large curvature in the streamlines near the leading
edge results \in a highly curved inviscid region. The 95% confidence bands are quite small for all
the boundary layers except in two regions. First, the thin boundary layer at 2.6% chord has a

large velocity gradient near the surface; because of this large gradient, the sensitivity to probe



§32133p ()¢ = 1 10] s13fe[ Kiepunoq adejins dinssord painseapy g aandiy

d95/u1 N 3l
06 Oy 0E o0Z Ol | 66

TllTll?in

1}

_ \ 0’89

Al




ov

s32182p (' = ¢t Joj uake| Krepunoq adejins uoljINs painsedpy L undry
. ‘31

sas/w ‘n

w of 0z 0N\8YO

L 1

40

[ N
—

Ly
£A)
93
(-4
C'EE
oee
Ll
put .J_;_”q__:.._ . 9/ ‘37
_,..n.:_r___,__:__ i 9z
/ _::.____~b_____ -0
\ ..__n..
i} W |,
b | t
=
-+ 02 3
3
-1- 0€




41
placement is heightened, and the measurements are less repeatable. Second, as suspected, the
boundary layer at 94.9% chord was separated, and the unsteadiness in the separation process

resulted in larger error bands.

Near-wake measurements were made at 105.4% chord and 109.6% chord using the LDV
technique. Five-hole probes were used to measure the far wake at 152.6% chord. Figure 8 shows
the data points and their 95% confidence bands for all three wake positions. The two near-wake
profiles, which are quite similar, are very asymmetric because of the large difference in trailing
edge boundary layer thicknesses on the two surfaces of the blade. The separation of the suction
surface boundary layer leads to negative mean velocities at the center of the near wake. Other
researchers have also measured negative mean velocities in near wakes. Wadcock [1980], using
a flying hot wire, measured negative mean velocities in the near wake of an airfoil. Braden,
Whipkey, Jones, and Lilley [1983] used a LDV to measure negative mean velocities in the near

wake of an airfoil with confluent boundary layers.!?

For the flow fields at all three incidence angles, the LDV measurements give information
on local turbulence intensity and percent backflow as well as the skewness and kurtosis of each
velocity distribution. We shall present turbulence intensity and percent backflow in chapter 7

after analyzing the velocity data to obtain U..

Flow Field for a -1.5 Degree Incidence

Following the completion of the measurements of the flow field for a 5.0 degree incidence
angle, we rotated the entire test section and established a new periodic, two-dimensional flow

field. Five-hole probe measurements yielded an incidence angle of —1.5 degrees and a Re. of

11 Confluent boundary layers develop on an airfoil with leading edge slats or trailing edge flaps
which causes the boundary layers from the various surfaces to interact.
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501,000. The average inlet velocity of 32.88 m/sec was computed from the (gage) measurements
of p1 = —382.0 Pa and pr, = 269.6 Pa. Figure 9 shows a typical outlet flow profile and the
equivalent turning angles as measured with a five-hole probe 31.9% chord downstream of the
blade trailing edge. After many adjustments of the various flow controls, we found this case to
be the closest we could obtain to achieving a periodic, two-dimensional flow field near the design

incidence angle of zero degrees.

From figure 9, the flow turning angle averaged across the three center blade passages was
49.4 degrees. The deviation angle was 14.1 degrees. Measurements also give an & of 0.094 and
a C_p2 of 0.473, while calculations using the equation of Lieblein and Roudebush [1956] give an
W of 0.071. Calculating a diffusion factor of 0.555 shows that while a risk of separation still
exists for i = —1.5 degrees, the risk is not as great as for the flow field with i = 5.0 degrees
(where D = 0.658). Figure 4 shows the velocity triangles for this set of inlet and outlet flow

measurements.

The new blade static-pressure distribution appears in figure 10. The vertical lines in figure
10 show the locations of LDV measurements. Integrating this distribution gives a lift coefficient
of 0.821. We can compare this pressure distribution with the pressure distribution corresponding
to the 5.0 degree incidence angle shown in figure 5. Although the two distributions are similar,
one can notice differences which could strongly affect the boundary layers on both the pressure
and suction surfaces. For the -1.5 degree incidence, the streamwise pressure gradient near the
leading edge of the pressure surface is less favorable and extends only to 3% chord. Downstream,
the flow consists of a mildly adverse pressure gradient from 3% chord to 62% chord followed by
an increasingly strong acceleration to the trailing edge. The initially laminar boundary layer
confronts a slightly stronger adverse pressure gradient for this second incidence angle. Transition
should occur in this region with a more probable chance of completion than that of the transition

on the pressure surface at the 5.0 degree incidence.



TURNING ANGLE, deg

AXIAL-VELOCITY RATIO

1.50

1.25 ¢~

1.00 =

0.75 b

0.50 ¢~

0.25

44

(¢]
[¢)

¢]
a

5]

70 =

60 ¢~

& -
50 -AM f.a—ﬁ ; W M

- & - ;a:-
40 f= = . .
30 p=
20 ) ! 1 {
-2 -1 0 1 2

y/s

Figure 9. Five-hole probe outlet survey for 1 = —1.5 degrees



45

§93183p (| — = i Joj uoynquusip ainssaid-oryeqs ape[g of 2Indiy

QUOHI 1N3JU3d

001 08 09 ov 0z 0
{ 1 1 1 i
G
NOILVI0T INIWIUNSYIW Aa1- |
30v4UNS NOILINS—©
32v4HNS IUNSSIUd—w
_ LI
Q
| o
| o -
_ o
_ o ©
_ _ — Q) @ ©
Qw ) ©Q © .
{) [AR A Tn]
_ CINI W o 5_ o _a _ -

0§5°t-

00t

05°0-

050

00l

1N3101344300 3HNSS3Hd



46
Once again, the very large adverse pressure gradient at the leading edge of the suction
surface implies a leading edge separation. Unlike the flow for the first incidence, however, a small
favorable pressure gradient exists on the suction surface from 3% chord to 9% chord. Thus, the
flow history of the suction surface boundary layers for the first two incidence angles differs and
the boundary layers for the second incidence angle should be thinner. Both pressure distributions
show a vanishing adverse pressure gradient near 80% chord indicating a possible separation region

near the trailing edge of the suction surface.

Results from the chemical sublimation method corroborate the blade static-pressure distri-
bution on the suction surface. With 95% confidence, a region of low shear stress was found at
45.1% =+ 2.3% chord indicating that separation occurs a little earlier for the -1.5 degree incidence
than for the 5.0 degree incidence. On the pressure surface, however, the surface flow visualiza-
tion gave some surprising results. With the same level of confidence, a region of low shear stress
was found between 14.0% + 5.5% chord and 38.2% + 5.2% chord. Thus, the results indicate a

separation region rather than the anticipated transition region.

As shown on the blade static-pressure distribution in figure 10, we measured boundary layers
at 12 chord locations on the pressure surface. Figure 11 shows these boundary layer profiles. At
this incidence angle, the streamlines near the leading edge show less curvature than they did at
the 5.0 degree incidence. Therefore, the inviscid region of the velocity profiles is quite linear.
Again, the error bands give 95% confidence bands as determined by the Student’s t test. These
bands tend to represent the repeatability of measuring at the same spatial location for each of
the six tests and are only visible when the boundary layer is very small and the velocity gradient

is very large.

Suction surface boundary layers were measured at 11 chordwise locations. Figure 12 shows
the velocity profiles and figure 10 shows the location of these profiles relative to the blade static-

pressure distribution. Once again, a linear, normal pressure gradient is evident. As expected from
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the pressure distribution and the surface flow visualization, separation occurs near the trailing

edge.

LDV measurements of the near wakes were made at 106.0% chord and 109.7% chord, while
five-hole probe measurements of the far wake were made at 131.9% chord. Figure 13 shows the
mean values and 95% confidence bands for the measurements of all three wake profiles. Similarly
to the 5.0 degree incidence, the near wakes are asymmetric and show negative mean velocities
at the wake center. The far wake shows symmetry and a much shallower depth than the near
wakes. Surprisingly, however, the width of the far wake is similar to the widths of the two near

wakes.

Flow Field for a -8.5 Degree Incidence

A third periodic, two-dimensional flow field was established by once again rotating the entire
test section. Inlet five-hole probe measurements yielded an incidence angle of -8.5 degrees and
a Re. of 507,000. The average (gage} measurements of p = —315.8 Pa and pr, = 351.6 Pa
result in an average inlet velocity of 33.28 m/sec. The outlet flow profile and the corresponding
turning angles of figure 14 show a substantially different flow field at this incidence angle than
the flow fields that existed at the first two incidence angles. The periodic flow field shows very
small wakes as measured with a five-hole probe 31.9% chord downstream of the blade trailing

edge-indicating a substantially reduced region of separation.

The five-hole probe measurements give an average turning angle of 45.1 degrees and a sz
of 0.421. The velocity triangles in figure 4 show this reduced turning of the flow. A deviation

angle of 11.4 degrees and a W of 0.028 also indicate a reduced region of separation relative to

the values from the first two incidence angles. Using the equation of Lieblein and Roudebush
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[1956], we computed values for & of 0.024 and 0.018 using the far-wake data at 131.9% chord and

152.6% chord, respectively. A diffusion factor of 0.452 also shows a reduced risk of separation.

The blade static-pressure distribution, as seen in figure 15, for i = —8.5 degrees shows the
difference in this new flow field even more clearly. Notice that the chord location of maximum
blade loading has moved from the leading edge, downstream to about 21% chord. The large
adverse streamwise pressure gradient near the leading edge has shifted from the suction surface
to the pressure surface. This shift implies that a leading edge separation occurs on the pressure
surface for this incidence angle. The adverse gradient on the pressure surface becomes less severe
with downstream distance until near 75% chord, where a favorable gradient gradually becomes
more pronounced towards the trailing edge. A strong acceleration of the flow exists on the
first 18% chord of the suction surface and one would expect laminar boundary layers in this
region. Either transition or separation should be expected on the aft 82% chord where the flow
decelerates. Unlike the pressure distributions for the first two incidence angles, however, no
extended region of gero streamwise pressure gradient exists near the trailing edge of the suction

surface indicating no extended region of separation.

For this incidence angle, we attempted two types of surface flow visualization: the chemical
sublimation method and the oil film method. Both methods showed a very two-dimensional
flow on the pressure surface with only one distinct flow region. The oil film method showed
oil accumulating near the leading edge before the pattern of “wall streamlines” formed which
indicated a possible separation and reattachment. On the suction surface, however, both methods
showed some interesting results. To 95% confidence, the oil ilm method showed that the flow
detached from the surface at 35.3% + 2.0% chord and reattached to the surface at 59.8% + 2.3%
chord. Meanwhile, the chemical sublimation method showed transition to occur at 56.0% + 0.8%
chord. Evidently, the appearance of a separation “bubble” triggered transition from laminar to

turbulent flow. The oil film method also showed a possible separation very near the trailing
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edge and evidence of the corner disturbances near the side walls. However, both surface flow

visualization methods showed an adequate core region of two-dimensional flow.

Figures 16 and 17 show the LDV measured velocity profiles-both mean values and 95% con-
fidence bands—on the pressure and suction surfaces, respectively. The normal pressure gradients
are linear as they were when i = —1.5 degrees. Near the leading edge of the suction surface, no
discernable boundary layer could be measured since the strong acceleration causes the boundary
layers to be very thin. Near the 35.3% chord location where the oil ilm method indicated sepa-
ration, we found it very difficult to obtain a high data rate. Also, even though we measured no
negative mean velocities, we did measure some negative instantaneous velocities. A separation

“bubble” seemed to be indicated.

Wakes were measured in two locations in the near wake region and two locations in the far
wake region. Figure 18 shows the LDV measurements at 106.0% chord and 109.7% chord and
the five-hole probe measurements at 131.9% chord and 152.6% chord. As one might guess, these
wake profiles look quite different from the wake profiles for the other two incidence angles. The
near wakes are nearly symmetric and show no mean negative velocities—again indicating that no
large region of separation occurs at the blade trailing edge. The symmetric far wake profiles

become much less deep but change very little in width.

Because of the indications from both the surface flow visualization and the LDV measure-
ments that a large separation “bubble” appeared on the suction surface, we decided to make
further measurements with some flush-mounted hot-film probes. The probes were epoxied to the
suction surface in the pattern shown in figure 19. The spanwise staggering of the probes pre-
vented the possibility of one probe shedding a wake onto a downstream probe. Also the electrical
wires from each probe were taken straight downstream to the trailing edge and not directly to a
side wall to minimize any interaction with the other probes. As viewed on an oscilloscope, the

direct voltage signals from the probes clearly indicated a sharp transition from small amplitude
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oscillations to large amplitude oscillations at the probe location of 55.8% chord-indicating a sud-
den onset of transition. Since the rough calibration of the hot-film signals requires information

from the analyzed LDV measurements, we shall wait to further discuss these results.
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Chapter 6 Method of Analysis

In the previous chapter, detailed measurements of boundary layers and wakes have been
presented. In order for us to better understand the physics of this complex flow field, we need
a method to analyze the data. Two typical profiles will be used as examples in explaining this
method of analysis. Figures 20a and 21a show these typical profiles. A strong normal pressure
gradient affects both of these boundary layers and masks even the most fundamental boundary
layer properties. Moreover, experience has shown that even without the complication of a strong
normal pressure gradient, the state of the boundary layer (laminar, transitional, or turbulent)
is often not self evident and the method for calculating the properties of the layer is often not

obvious.

In this chapter, we will present a method of boundary layer analysis which draws on avail-
able theoretical and empirical formulations. The analysis describes methods of reconstructing
boundary layer profiles from data influenced by a normal pressure gradient, of comparing data
against standard laminar and turbulent profiles, and of generating important boundary layer

parameters. The analysis encompasses laminar, transitional, turbulent, and separated boundary

layers as well as wakes. Finally, we include some fundamentals of the analysis of random data.
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Normal Pressure Gradient

Surface curvature, blowing, or suction may induce significant streamline curvature in a flow.
Streamline curvature in turn causes a normal pressure gradient which results in a cross streamline
gradient in the inviscid velocity profile. As shown in figures 20a and 21a, the freestream velocity
does not reach a constant value (the edge velocity, U.). Boundary layer analyses, however, assume
that the location of the boundary layer edge is known and that a constant freestream velocity
exists outside the boundary layer. To use or formulate a boundary layer analysis, the procedure

must account for the effect of the normal pressure gradient.

Mellor and Wood [1971] and Ball, Reid, and Schmidt [1983] outlined one method which
accounts for these effects. The method assumes that the measured velocity profiles represent
composite profiles. This implies that each of the profiles has a region where the viscous effects
predominate, a region in which viscous effects are negligible, and an intermediate region in which
the viscid-inviscid results match. Mathematically, the measured composite profile is the sum of
a boundary layer profile and an inviscid profile, less what appears in both. The last quantity is

commonly called the boundary layer edge velocity, U.. That is,
Umeas = U + Uiny — Ue .

Clearly, both the boundary layer velocity, u, and the measured velocity, upyeas, must go to gzero
at the wall, so that

U. = (Uinv )wall
and the scheme reduces to finding the value of the inviscid velocity at the wall.

The validity of applying this procedure to velocity data is difficult to establish. However,

it does allow for a consistent method to analyze measured velocity profiles provided that the
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inviscid region can be properly identified from the data. There does not appear to be a rigorous

way to do this, so a consistent method which produces plausible results is adopted.

A least-squares technique is used to fit a polynomial to the inviscid velocity profile. Since
the inviscid profiles may have significant curvature, the analysis provides an option of fitting the
inviscid profile with a linear, quadratic, or cubic polynomial. The difficulty lies in choosing the
data points to be included in the least-squares analysis. To minimize this problem, the number
of data points used in the polynomial fit was varied. First, the maximum number of points,
Nmax, which could possibly be within the inviscid region was determined. For dp/dy > 0 {(as an
example, see figure 21a), Np. is taken to be the number of points between the point furthest
from the wall and the point of maximum velocity. For dp/dy < 0 (as an example, see figure
20a), the data point at which the profile slope changes by at least 50% is used instead of the
point of maximum velocity. For the data in figure 21a, N, was determined to be 20, while
Nmax was found to be 24 for the data of figure 20a. Many applications have shown that for the
region of 0.55Nnax € Niny < 0.95N 0y, the value of U, is relatively independent of the number
of points in the fit. This is clearly shown for the data of figures 20a and 21a in table 3 where
polynomials were extrapolated to the wall to obtain values of {/,. Table 3 also gives the mean and
95% confidence bands of all values of U,. The degree of the polynomial was chosen to minimise
the 95% confidence bands of U,. These 95% confidence bands have been observed to be quite

small (~0.5%).

A u profile was calculated using the mean value of U, and a polynomial fit of u;,,. We used
Niny = 0.75Npmax as the number of data points in the fit to determine u;,, as the U, found in
this way was consistently close to the average U.. A smoothed spline fit of the boundary layer
velocity profile was used to calculate the boundary layer thickness, §. & is taken at the position
at which

u = 099U, .
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Table 3.  Variation of U, and § with the number of data points used in the polynomial fits of
the inviscid regions at (a) 57.2% chord of the pressure surface for i = 5.0 degrees and
(b) 53.6% chord of the suction surface for i = 5.0 degrees (linear fits were used for
both of these boundary layers)

(a)

Ninv U., m/sec §, mm
13 23.36 2.30
14 23.37 2.31
15 23.38 2.33
16 23.39 2.34
17 23.41 2.37
18 23.40 2.35
19 23.40 2.35
20 23.40 2.35
21 23.40 2.35
22 23.40 2.35
23 23.40 2.36

23.39 + 0.01 2.34 + 0.01
(b)

Nipy Ue, m/sec §, mm
11 33.81 11.50
12 33.82 11.51
13 33.83 11.53
14 33.85 11.58
15 33.83 11.54
16 33.82 11.52
17 33.80 11.47
18 33.79 11.44
19 33.78 11.44

33.81 + 0.02 11.50 £+ 0.04
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Figures 20b and 21b show the reconstructed boundary layer profiles using linear polynomial fits
in the inviscid regions. As might be anticipated, the effect of the normal pressure gradient does

not penetrate far into the boundary layer.

After comparing plots of the shape of the resulting turbulence intensity for several bound-
ary layers versus normalized distance from the wall (y/6) against classical measurements,? we
concluded that the technique does indeed give reasonable results. Remember that the values
of U, are only a result of this technique for analysing boundary layers with a normal pressure
gradient; these values of velocity may not exist in the actual flow. For instance, boundary layers
with dp/0y > 0 give a U, larger than any measured values of u. Therefore, if we use these values

of U, to compute C, from the inviscid equation

Ue\?
Cp = 10 - ("/_1) 3

we will obtain a value of C, that is less than the measured value of Cp. It should be noted that
Kiock [1983] developed an alternate method of accounting for the effects of the normal pressure
gradient using the equations for the boundary layer parameters. Compared to the technique just

described, however, we found the technique of Kiock [1983] to be more difficult to employ.

General Curve F'it of the Data

Comparisons between boundary layers are often made in terms of simple integral thicknesses
or their ratios (shape factors). In order to calculate the boundary layer integral parameters, the
analysis fits the velocity data points with a mathematical curve. A parametric cubic spline

was used for the curve fit. This curve parametrically develops the u and y ordered pairs as

2 The turbulent boundary layer measurements of Klebanoff [1954] show that turbulence in-
tensity levels should increase from freestream levels as y is decreased to between 100% and
120% of the boundary layer thickness.
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independent functions of the overall arc length of the curve. Even this curve fit tends to oscillate
when a cusp appears in the profile. Therefore, a smoothing routine was added to the spline fit.
Near the wall, a parametric cubic spline was fit between the data point nearest to the wall and
the zero velocity point that would occur at the wall. For boundary layer profiles not well resolved
in the near-wall region, this latter fit represents the largest potential error in the calculation of
the integral parameters. Figures 20c and 21c show the calculated spline fits to the boundary

layer profiles in each example.

Integral Parameters

The most common of the parameters which characterize the boundary layer are integral
thicknesses based on the conservation of mass, momentum, and energy. In effect, the boundary
layer acts to displace the streamlines in the flow outside the boundary layer away from the wall.
A displacement thickness, 6*, can be defined as the distance by which the solid surface would
have to be displaced to maintain the same mass flowrate in a hypothetical inviscid flow. For

steady, incompressible flow, §* can be defined as

o
5*:/ (1-l>d.
0 v.) v

§* is commonly used as a normalizing factor in presenting data since the alternative, the boundary
layer thickness, is difficult to measure. A momentum thickness, f, can be determined from the

steady, incompressible momentum equation as

® u u
= [ 2 (- X)) ay.
¢ /oue(l Ue)y

The momentum thickness represents the momentum loss due to the presence of the boundary

layer and is proportional to the drag when no streamwise pressure gradient exists. Many empirical
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correlations use the momentum thickness. Finally, a steady, incompressible energy thickness can

o= o @]

Reynolds numbers can be formed based on all three of these integral thicknesses using the bound-

be defined as

ary layer edge velocity. They are especially useful in describing the boundary layers just before,

during, and just after transition.

Some parameters describe the shape of the velocity profile. The first and second shape

factors of the velocity profile are defined as

6-
Hys = 7
and
()
Hiy = 7 .

Note that the definitions require that both shape factors be greater than unity. Schlichting [1979)
gives some traditional values for H,, based on approximate integral solutions of the boundary
layer equations. For laminar boundary layers, H1; lies between 3.5 and 2.3. Transition brings
about a considerable drop in H,, giving a turbulent boundary layer in which H;, lies between

1.3 and 2.2. Laminar separation takes place at a value of H,, near 3.5 while turbulent separation

takes place at a value of H;5 near 2.2.

In the current study, the integral parameters and shape factors were found by integrating
the spline fit using a trapezoidal rule with very fine spacing. Values of these parameters and the
associated Reynolds numbers are given in appendix B for each of the profiles shown in figures 20¢
and 21c as well as all of the other measured boundary layers. A value for H, of 2.86 indicates
that the boundary layer in figure 20c is laminar while a value of Hi, of 1.95 indicates that the
boundary layer in figure 21c is turbulent. Based on the work of Purtell, Klebanoff, and Buckley
[1981] and Murlis, Tsai, and Bradshaw [1982], one would anticipate that the Rey of 452 for the

profile of figure 20c is too low to support turbulence.



69

Laminar Boundary Layers

For a constant streamwise pressure gradient, laminar boundary layers can be plotted in
such a way as to collapse them all to the same curve. Such laminar boundary layers are said to
be self-similar and solutions to the boundary layer momentum equations may be solved using a
similarity solution. A similarity solution reduces the number of variables in the equation by using
a coordinate transformation. The boundary layer momentum equation for steady, incompressible
flow can be written as

Ou Su 1 dp. 5%y

“or T oy T Tpdz T VEp

Several different coordinate transformations have been used for similarity solutions. One such

transformation is the Levy-Lees transformation (see Cebeci and Smith [1974]) which is given as

x/lrei
= [ o)
0 Uref gref

and
1 Ue Y \/——
= —= Re
7 26 Uref eref
where
Re = grerref .
v

These transformation variables are for an incompressible flow with a constant value of viscosity.
The variables Uer and Zer refer to a reference velocity and a reference length, respectively. A

similarity function, f, can then be defined from the streamfunction, v, as

v(z,y) = V2 f(&n)

where
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and

_ 9
T 8z

The boundary layer momentum equation for steady, incompressible flow can now be transformed

into the following differential equation

F“ 4 5+ B~ ) = 22 S - fe f)

where

E dUe
U, d¢ -

g =
f is a streamwise pressure gradient parameter and can be determined from the measured stream-
wise static-pressure distribution. These measurements are also required to determine the values

of £. When f has a prime for a superscript, it refers to a derivative with respect to 7. A derivative

with respect to £ is noted by a subscript £.

Falkner and Skan [1931] developed a similarity solution for laminar boundary layers flowing
over wedges with constant streamwise pressure gradients. In terms of the Levy-Lees coordinates,
the Falkner-Skan solution involves no changes in the ¢ direction. Thus all derivatives with respect
to £ (of f) are zero and the boundary layer momentum equation for steady, incompressible flow

reduces to the following ordinary differential equation:
flll + ff" + ﬂ(l _ f/2) = 0.

The present boundary layer analysis solves this equation using the solution scheme of Hoffman
[1983]. The Falkner-Skan solution represents a very good approximation of the laminar boundary
layer solution in two cases: first, when the streamwise pressure gradient changes only slowly in
the streamwise direction, and second, near the leading edge of the boundary layer surface (since ¢
is very small and the Levy-Lees transformed equation is approximated quite well by the Falkner-
Skan equation). In the previous equation when 3 is equal to zero, the Falkner-Skan solution

reduces to the original similarity solution of Blasius [1908] for laminar boundary layers with no
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streamwise pressure gradient. Separation of the laminar boundary layer will occur for a 8 with

a value of -0.199.

Figure 20d compares the profile of figure 20c with a Falkner-Skan profile at an equivalent 3.
Although the streamwise pressure gradient is not constant here, the comparison is quite good.
The profile of figure 20c is laminar. Integral parameters and skin friction values can be computed
from the Falkner-Skan solution. These values are presented in appendix B; where appropriate,

they are compared to the values calculated from the spline fit.

Transition

Transition represents the region in which a laminar boundary layer becomes turbulent.
Within this region the flow is intermittently turbulent and we can define an intermittency factor
as the fraction of time during which the flow at a given position remains turbulent. A fast-
response, continuous measuring device, such as a hot-wire or hot-film probe, can be used to
measure the intermittency. In “natural” transition, laminar flow instabilities lead to the onset
of transition where the intermittency factor first becomes larger than zero. At some point after
this onset, changes occur to the mean-velocity profiles as the profiles gradually transition into
fully turbulent profiles and the intermittency factor becomes one. The length of the transition
region depends strongly on, among other parameters, the streamwise pressure gradient and the
freestream turbulence intensity. As we shall see in chapter 7, the presence of a separation “bub-
ble” can instigate transition from laminar to turbulent flow since the separated shear layer can
be very unstable. In this case, the length of the transition is much shorter than is the case for

“natural” transition.

Abu-Ghannam and Shaw [1980] developed empirical equations to help determine the onset

and completion of “natural” transition. Here, transition is defined as the region where the



72
intermittency factor goes from zero to one. These relationships include the effect of freestream

turbulence, (Vu/ 2 /Ue)., and a streamwise pressure gradient parameter,

ﬁ dU,

Ao:ud:c'

The value of Rey at the onset of transition is found from

Rep, = 163 + exp [F(/\g) LD (m x 100) J

6.91 U.

where

F(Xg) = 6.91 + 12.75)¢ + 63.64 A2

for adverse pressure gradients (A\y < 0) and
F(Xg) = 6.91 + 2489 ~ 12.27A3

for favorable pressure gradients (A > 0). Comparing Reg,, with measured values of Rey gives
the location of the onset of transition and Re, ,. The value of Rey at the completion of transition

is found from
Rep. = 540 + 183.5(0.000168 ReJ5 — 1.5)(1 — 1.4)).

Once again, this value can be compared with measured values of Regy to locate the end of

transition.

The incomplete transition of the pressure surface profiles for the 5 degree incidence angle is
shown in figure 22. Here the transition is termed incomplete as the value of Reg for the profile
at 97.9% chord is below that believed capable of sustaining full turbulence. The value of Re, is
413 while we computed Rey . = 549 from the empirical equations of Abu-Ghannam and Shaw
[1980].13 Note the comparison with the Falkner-Skan profiles, particularly the thickening of the

profile in the near-wall region.

13 Later, we observed no discernible logarithmic region within this boundary layer—a region
that characterises all turbulent boundary layers.
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Turbulent Boundary Layers

Turbulent boundary layers are commonly divided into different regions. The innermost
region is dominated by viscous shear and is self-similar for all turbulent boundary layers. This

region is call the viscous sublayer and is described by

u yu,

Uy v
or

ut = yt

where ut and y* are called inner variables. tr is called the shear or friction velocity. Outside

of the sublayer but still very close to the wall, the velocity is logarithmic with distance as
+ 1 +
ut = = In(y*) + C.

Turbulent shear dominates viscous shear in this logarithmic region. The viscous sublayer and
logarithmic region overlap in a region called the buffer layer. Collectively the viscous sublayer,
buffer layer, and logarithmic layer are called the “law of the wall.” Streamwise pressure gradients
have essentially no effect on this region. Outside of this wall region, the streamwise pressure
gradients are important and the velocity profile exhibits a wake-like form. Coles [1956] developed
an equation for the wake region called the “law of the wake.” His composite equation included
a wake-like function added to the logarithmic equation. This wall-wake equation can be written

as

ut = lIny+ + C + EW(
K K

o[

)

where

W(%) = 2sin? (_;r?y) =1 — cos (%) .
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W( ) is called Coles’ universal wake function and is normalized to be zero at the wall and to be
two at y = 8. Coles’ wake parameter II brings in the effect of the streamwise pressure gradient
and has a value from 0.5 to 0.6 for a zero pressure gradient flow. Coles and Hirst [1968] later
examined the data from a number of turbulent boundary layer experiments and determined that

the von Karman mixing length parameter, x, should be 0.41 and the law-of-the-wall constant,

C, should be 5.0.

The analysis of turbulent boundary layers should include a fit of the data to the wall-wake
equation. A least-squares fit of the data to the equation was chosen with u, and II as the variables
to be determined and & considered to be a known quantity.!* The error between each data point

and the wall-wake equation is

E, = %ln(g'%‘i) + u,C + u;l'l [1 - cos(—’réﬂ)] - u, .

Now the minimum error squared of all the data points must be found with respect to both u,

and II. Taking the partial derivative of the error squared for each data point with respect to u,

and II yields

02 s (L) v Lo T ()

and

o= [ ()

Summing for all the data points and setting the two expressions equal to zero give two equations

E:
Ur

M=
| @
I
o

3
1l
-

and

OE?
a

N
2
n=1

14 An attempt to use all three variables (u,, II, and 6) in a least squares scheme produced
inconsistent results.
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which can be solved simultaneously for u, and II to give the minimum squared error. A secant
method is used to solve the simultaneous non-linear equations. Sun and Childs [1976] presented
a similar method for compressible turbulent boundary layers using the velocity transformation of
van Driest [1951]. Coles and Hirst [1968] used a least squares-fit using u, and § as the unknown
variables with an initial guess of II. Then, at the position y = &, they substituted U,, u,, and
6 into the wall-wake equation to obtain a new value for II. They repeated this process until the

solution converged.

In order to use the fit of the wall-wake equation, the range of data points to be used in the
fit must be considered. White [1974] states that the logarithmic region does not hold for yt <35
(corresponding roughly to y/6 < 0.02). For a large wake component, Coles and Hirst [1968] state
that the region being fit should not include y/6 > 0.9. They suggest that this number should be
reduced to 0.75 for a zero streamwise pressure gradient and 0.8 for a vanishing wake component.
Here the region 0.05 < y/6 < 0.75 was used: Sensitivity to the specific range of data points was

not large.

Figure 21d shows the data of figure 21c in inner variables where u, = 0.825 m/sec and

Il = 4.49. Parameters determined from the wall-wake fit are given in appendix B.

Streamwise pressure gradients can have a strong effect on the outer region of a turbulent
boundary layer. We illustrate this in figure 23a by presenting typical profiles for an Re, of
5000 and several values of II. The logarithmic region decreases in size as II increases and the
streamwise pressure gradient becomes more adverse. The size of the logarithmic region also
decreases as fey decreases. For illustration, figure 23b shows typical profiles for a II of 0.5 and

several values of R2ey. Note the difficulty in discerning a logarithmic region for an Re;p of 500.

Others have made attempts to characterize the turbulent boundary layer profiles. Perry and
Schofield [1973] developed a similarity defect law based on the maximum shear stress, Tiyax, rather

than the wall shear stress, 7,,. The defect law was originally developed for attached boundary
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layers under moderate to strong adverse pressure gradients where 7,5 /Tw > 1.5. The defect law

is
U°U: £ = 10— 04 (i)% — 0.6 sin (21%)
where
B\?
U, = 8.0 (f) Un
and

U
B = 2866 (=) .
286 (U)

]
Up is a velocity scale based on the maximum shear stress (Um = /Tmax/ p) and L is the distance
from the wall to 7hax. The velocity scale U, is found using the methodology that Clauser [1954]

used to determine u,. A half-power equation is used near the wall,

= 047 (ﬂf (l)% +10 - 2

Bl
U. U. & U.

Perry and Schofield [1973] suggested using the defect law for the outer 90% of the boundary

layer with the half-power equation forming the innermost portion of that defect law. They

recommended the law of the wall as an inner wall matching condition.

Figure 24 shows an example of how to obtain the proper scales for the similarity defect
law of Perry and Schofield [1973]. First, we plot the measured boundary layer data as u/U,
versus (y/6*)'/? and then find a value of U, /Ue such that the half-power equation of Perry
and Schofield {1973] is somewhere tangent to the distribution of data points. Figure 24a shows
this procedure. Note that this procedure can be very difficult to employ since the half-power
equation only intersects the data points in some cases. Now we can compute B and plot the data
as (U, — u)/U, versus y/B along with the similarity defect law. Figure 24b shows similarity in

the outer 90% of the boundary layer.

Most analyses, short of direct computation, consider boundary layers in which the pressure

gradient is constant, so that the profiles are self-similar with downstream distance-so called
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defect law of Perry and Schofield
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equilibrium layers. Clauser [1954, 1956] conceived of a parameter

& dpe
Tw dZ

B. =

to characterize equilibrium. A turbulent boundary layer with a constant 3. has outer region
similarity and is called an equilibrium turbulent boundary layer. All of the gross properties of

that boundary layer can be described with a single parameter. Clauser [1954, 1956] chose the

1 [® (U, — u\’
G_Z-/O(“T)dy

parameter G, where
and

G is called Clauser’s shape factor and A is termed the defect thickness. For the turbulent
boundary layer in figure 21c, we computed 3. = 7.63, G = 19.41, and A = 141.76 mm. Most of
the turbulent boundary layer profiles on the cascade blade are nonequilibrium. In practice, one

expects nonequilibrium to be the rule rather than the exception.

Another parameter used to characterize equilibrium turbulent boundary layers is II. Coles

[1956] suggested an equation for II,

= (5)(%) e

For the data in figure 21c, this equation gives II = 4.12 while the least-squares fit of the data to

the wall-wake equation gives II = 4.49.
Ludweig and Tillman [1949] developed an empirical expression for the skin friction coefficient,
Cy, of a turbulent boundary layer. The curve-fit expression from their experimental data is

Cy = 0.246 Re; 26310 06™8Ha

The skin friction coefficient, shear velocity, and wall shear stress can be related by

Tw

Cy = +———
I L0z
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and

Using this empirical expression, we can compute u, = 0.852 m/sec for the data in figure 21c.
Remember that we obtained u, = 0.825 m/sec by using the least-squares fit of this same data to

the wall-wake equation.

Separation

Separation is the entire process of the breakdown of boundary layer flow. For laminar
boundary layers, this definition simply refers to the history of the boundary layer leading to a
vanishing wall shear stress. However, even for laminar boundary layers, separation might not
always occur for a specific shape factor. For turbulent boundary layers, Sandborn and Kline
[1961] describe separation as an unsteady, three-dimensional region within the flow. Before the
time-average wall shear stress vanishes, local, intermittent separation occurs which gives rise
to streaks of instantaneous backflow. For intermittent separation, Sandborn and Kline [1961]

proposed the relation

1
.

Hy; = 1+
Simpson, Chew, and Shivaprasad [1981a] quantified the various stages of separation with the in-
stantaneous backflow near the wall. Incipient detachment occurs with 1% instantaneous backflow;
intermittent transitory detachment occurs with 20% instantaneous backflow; transitory detach-

ment occurs with 50% instantaneous backflow; and detachment occurs when the wall shear stress

becomes zero.
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Numerical Methods

A primary objective of this research project is to provide very detailed experimental data
for future comparisons to numerical, viscous flow computations. As a means of both analysis
and comparison, we have selected a “standard” numerical method-namely, the STANS code for

solving the boundary layer equations.

Crawford and Kays [1976] developed a numerical method (STANS) for solving the com-
pressible boundary layer equations for both two-dimensional and axisymmetric flows. In our
case, we solve the incompressible equations for two-dimensional boundary layers. STANS solves

the time-averaged continuity equation,

o,
Oz oy ~—

and the time-averaged, boundary layer momentum equation,

WO 0 4 du'v’ ldp. ,Ou
oz 8y Oy?

dy ~  pdr

Crawford and Kays [1976] use the familiar assumption of Boussinesq (1877] that perceives the
turbulence as producing stresses on the mean flow. Furthermore, the apparent turbulent Reynolds

stress is related to the rate of mean strain through an apparent scaler turbulent or “eddy”

viscosity,
i =
p - p fay N
The momentum equation now becomes
du Ou 1 dp. 8%u
Yoz + "ay T T pdz + (V+Vt)3y2

and a turbulence model is required to determine v,.

Crawford and Kays [1976] use another analogy that relates turbulent action with viscous

action, namely, the “mixing length” model of Prandtl [1928]. Prandt] [1926] relates the molecular
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kinetic theory for finding the viscosity of a gas to turbulent “kinetic theory” in order to determine

the “eddy” viscosity,

where the length scale £ is called the “mixing length.” Caution must be taken in using the
analogies of Boussinesq [1877] and Prandtl [1926]: No physical reasoning exists for the analogy
between viscous and apparent turbulent stresses and the variables v, and £ are not true fluid
properties but flow dependent quantities that can vary throughout the flow field. STANS uses

very simple models for this variation-models based on experiments for specific flow conditions.

Von Karman [1930] showed empirically that
£ = Ky

for the logarithmic region. This relation fails in the viscous sublayer and buffer layer, so van

Driest [1956] used a damping function to help model £ throughout the inner region,
£ = Ky (1 - e"’+/"+) .

The empirical constant A* can be considered to be an effective sublayer thickness (combined
thickness of the viscous sublayer and buffer layer). As we discussed earlier, streamwise pressure
gradients affect the size of the logarithmic region and thus the effective sublayer thickness. Using
data from various experiments, Crawford and Kays [1976] developed a relationship for At when

no mass transfer exists,

_ 25.0
- 51.4751/4}’_1_'_ 1.0

pud  dr

At
for favorable or zero streamwise pressure gradients (dp./dz < 0) and

25.0

20.59v d
pue”—dz:.;:‘L + 1.0

At =

for adverse streamwise pressure gradients (dp./dz > 0). These equations show that favorable

streamwise pressure gradients have larger values of A* than adverse gradients. Launder and Jones
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(1968] felt that the effective sublayer thickness does not change instantaneously to a changing

streamwise pressure gradient and suggested the use of a “lagging equation,”

da*  Af - At
dz+ ~  4000.0

Outside of the wall region of a turbulent boundary layer, Prandtl [1942] observed the em-

pirical approximation

£ = X6,

However, flows with a low Res have an inner layer which is a fixed fraction of the boundary
layer thickness. Therefore, viscous stresses become increasingly more important for lower Re,
and evidence shows that values of A are larger for flows with Reg < 5000. Crawford and Kays

[1976] proposed
0.085

A= max{o_%Re;o.us

for the case with no mass transfer.

STANS solves the parabolic boundary layer problem using the finite-difference approxima-
tion suggested by Patankar and Spalding {1967]. For laminar boundary layers, STANS should
give better solutions than the solution of Falkner and Skan [1931] since the streamwise pressure
gradient is allowed to vary by providing the outer boundary condition of U, varying with z. For
this boundary condition, we can simply use our measured blade static-pressure distribution. The
no-slip condition is applied at the blade surface. For our boundary layers, we used the inner
region turbulence models within the viscous sublayer instead of using the optional “wall func-
tions.” STANS uses the inner region turbulence model when ¥ < A6/x and uses the outer region
turbulence model when y > Aé/k. Since little information exists for modeling the turbulent-like
motion within the transition region, Crawford and Kays [1976] use an ad hoc model. In the inner

region, they create a gradual transition by modifying A* when Reg exceeds Rey ,,

A* = AY 4 (3000 - A+){1.0 — sin [}12;57

(Reg — Rea,,)]}2 .

8,8
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They employ this equation until Reg . = 2Reg,,, where the full turbulence model becomes effec-
tive in the inner region. Since the boundary layer equations are parabolic, the STANS solution

becomes unstable for separation of either laminar or turbulent boundary layers.

Wakes

Initially, the analysis of the wake profiles proceeds in the same manner as the analysis of
the boundary layer profiles. Since the static pressure is normally constant across the wake, the
analysis does not have to account for a normal pressure gradient. A spline is used to curve fit the
data points from the point of minimum velocity to the last point in the freestream on one side
of the wake. Integral parameters can then be calculated for this side of the wake. The analysis
is repeated on the other side of the wake. The integral thicknesses for the entire wake can be

found simply by summing the parameters for each side of the wake.

Turbulent wakes show a strong dependence on their history. Near the origin of a turbulent
wake, the mean flow and turbulent structure must undergo a drastic change from the characteris-
tics of a boundary layer to the characteristics of a wake. We call this region the near-wake region.
Downstream of this near-wake region, the wake begins to show similarity or self-preservation.
The mean-velocity profile shows self-preservation well before the turbulent structure. First, the
mean static pressure must reach a state of equilibrium, leaving no pressure gradient across the
wake. If the static pressure within the two boundary layers forming the wake is quite differ-
ent, the wake centerline within the near wake will show a significant curvature until the static
pressure reaches equilibrium. Next, the mean-velocity profile will become self-preserving and a
far-wake region will emerge. Finally, the turbulent structure will become self-preserving. One

would expect Hiy to decay asymptotically to 1.0 as the wake mixes out.

O,
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Wake similarity requires different length scales on the pressure side, Ly, and the suction
side, L,, of the wake. L, and L, are the distances on the pressure and suction sides of the wake
centerline from the point of minimum velocity to a point where the velocity defect is %(U, — ugy).

Lakshminarayana and Davino [1980] suggested a Gaussian distribution to correlate the wake data,

Ue —u -0.693n2
—_— = e
Ue — ua

H

where 7 is the distance across the wake normalized by the appropriate length scale. One would

expect that only far wakes would show similarity with this type of correlation.

Random Data

Most boundary layer and wake flows vary with time and cannot be described by an explicit
mathematical equation. Measurements of these flows result in the acquisition of random data.
For random data acquired with a continuous, fast-responding measuring device such as a hot wire
or hot film, information can be obtained from the characteristics of the time history. Each time
history includes a finite time interval and represents a sample record of a random or stochastic
process. The collection of these sample records is called an ensemble. We can take the first
moment of each sample record to obtain the mean value and the joint moment of the same
random process with a time delay to obtain the autocorrelation function. If the moments are
time invariant, the random process is stationary. Furthermore, if the moments for the entire

ensemble equal the moments of each sample record, the stationary random process is ergodic.

Histograms of the digitized values of analog sample records can be plotted in a similar manner
to the discrete LDV data. As with the LDV data histograms, we can compute the mean value,

variance, skewness, and kurtosis. These values allow us to study the time-average properties of
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an unsteady process such as the signal of the wall shear stress within a turbulent or separated

shear layer.

A fast Fourier transform (FFT) can decompose the finite discrete time series into a set of
frequency components. Since the time series is of finite length, the FFT assumes that this finite
time series is repeated periodically for all time. Thus, if the amplitudes at the two end points
were not equal, many higher frequencies would be necessary to represent this abrupt change
in amplitude. Therefore, the FFT requires the signal to be tapered with the use of a spectral
“window.” Gade and Herlufsen [1988] suggest the use of a Hanning “window” when analyzing
most continuous signals. Use of an FFT allows us to observe our sample record in the frequency
domain. Thus, we can examine a spectrum of either the amplitude or phase of any time varying

property such as the wall shear stress.

Time signals of some unsteady phenomena may contain a range of significant frequencies
which is obscured by a broadband signal. In order to extract information from the range of
gignificant frequencies, we can use a digital filter to filter out frequencies not in this range. For
instance—as we shall see in chapter 7-the unsteady wall shear stress in the vicinity of a separation
“bubble” has a characteristic range of low frequencies which may be difficult to detect because
of the presence of many higher frequencies. In that case, we numerically build a low-pass,

Butterworth filter with a given cutoff frequency and filter the time signals.

Besides analyzing a single stationary random process, we may want to analyze the relation-
ship between two stationary random processes. If two flush-mounted, hot-film probes measure
the time varying values 7,, and 7,, the fluctuations of these simultaneous measurements about

the time-average values are related through the correlation coefficient,

N
# > (rwe = To)(Twe — Tus)
C y = n=1
: , & & =
~ Y Tw. — T )? ~ > (Twy — Twu)?
n=1 n=1

The correlation coefficient is normalized such that Cy; = 1 for identically correlated signals,

Cas = 0 for uncorrelated signals, and C,, = —1 for identically correlated signals with a 180
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degree phase shift. The relationship between the two signals can also vary with time. A cross-
correlation function is the joint moment of two random processes over the same time span. Both
the autocorrelation and cross-correlation functions are time dependent. To obtain information of
how random processes are related in frequency, we can use an FFT of these functions to obtain
the autospectral density and cross-spectral density functions. Normalizing the cross-spectral
density function with the square root of the product of the the autospectral density functions for
each random process yields the coherence function. These frequency dependent functions give

information on both the amplitude and phase.
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Chapter 7 Discussion

In the previous chapter, we presented a method for analyzing boundary layers and wakes.
Now we can examine the data in light of this method of analysis in order to better understand
the physics of the cascade flow field. Note that the value of p was taken as 1.205 kg/m3 and the

value of v was taken as 0.150 cm?/sec throughout the analysis.

Pressure Surface for a 5.0 Degree Incidence

Figure 6 showed the boundary layers measured on the pressure surface for i = 5.0 degrees.
After removing the influence of the normal pressure gradient, we compared the reconstructed
boundary layer data with a Falkner-Skan velocity profile at the local streamwise pressure gradient.
For the velocity profiles measured near the trailing edge, we also attempted to fit the results to
the wall-wake equation of Coles [1956]. The velocity profiles are replotted nondimensionally
in figure 25. In spite of the influence of both curvature and a changing streamwise pressure

gradient on the flow field, the Falkner-Skan approximation appears to reasonably represent the
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mean velocity profiles through about 57.2% chord. At 68.0% chord and beyond, there is an
increased thickening of the measured profiles relative to the Falkner-Skan solution which indicates

transitional boundary layers (also shown in figure 22).

Empirical relationships have been developed for the prediction of the beginning and end of
transition; these relationships include the effects of freestream turbulence and streamwise pressure
gradient. Using the relationships of Abu-Ghannam and Shaw [1980), for example, we predicted
the onset of transition for the pressure surface data using the measured pressure distribution
and a freestream turbulence intensity of 1.5%.!5 Omset of transition was predicted to be at
a momentum thickness Reynolds numbers (Reg) of 342, and comparison with the Rey found
from the profiles put this onset at 47.8% chord. By onset here, we mean the first location at
which the intermittency, as measured with a flush-mounted hot-film probe for example, would
be greater than zero. Because of the strong favorable gradient near the trailing edge, the scheme
also predicted that a fully-turbulent boundary layer would not develop on the pressure surface.
There do not seem to be any empirical prediction schemes which include the effect of surface
curvature. While convex curvature apparently has no effect on transition, the concave curvature
of the pressure surface can promote the generation of Gértler vortices (see Gortler [1940]), which

can cause transition to occur earlier.

Sublimation flow visualization studies helped determine the transition point on the pressure
surface. The average of five flow visualization tests placed the transition point at 64.2% + 3.9%
chord with 95% confidence. Figure 26 shows a plot of mean velocity, normalized by the edge
velocity, for a fixed distance (y = 0.508 mm) above the blade and a varying chord location. At
this distance above the surface, the measurement volume is above the boundary layer for the

first two chord locations. The decrease in mean velocity with chord location over the first half of

15 This turbulence intensity value was measured just outside of the leading edge boundary
layers with a hot wire inserted from downstream. The difference between this value and the
0.18% found in the approach flow is probably due to the interaction of the flow with the
blade pack.
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the blade reflects the growth of the boundary layer relative to the fixed distance. The rapid rise
in mean velocity near 60% chord indicates the onset of transition (see for example, Klebanoff,
Tidstrom, and Sargent [1962]). Agreement with the flow visualization studies appears to be
quite good. In this case, onset means the first location where transition affects the mean velocity
profile. Since the intermittency of the flow becomes greater than zero before the mean velocities
are affected, our calculations based on the empirical equations of Abu-Ghannam and Shaw [1980]
pick a smaller chord value for the onset of transition. The fact that the mean velocity does not
reach a constant (or decreasing) value with increasing chord location indicates that the transition

process is not complete,

Integral parameters can also characterise transitional boundary layers. As shown in figure
27, the plots of 6* and Res show the boundary layer growth.!® Calculating these parameters
using a spline fit of the data gives values nearly the same as both the Falkner-Skan and STANS
golutions through at least 35.1% chord. Because of the lack of near-wall measurements for
gome of the extremely thin layers near the leading edge, we felt that the values of momentum
thickness obtained from the spline fit were not accurate.!” At 35.1% chord, STANS computes
a value for Reg of 250 and activates a transition turbulence model.!® STANS5 never activates
a full turbulence model since a value for Rey of 500 is never reached. Downstream of 35.1%
chord, the boundary layer begins to transition and the most satisfactory values of the integral
parameters are calculated from the spline fit. The Falkner-Skan solution yields laminar values
that give steadily worse comparisons. The numerical computations of STAN5 give only slightly

better results—so that we might infer that the transition model is not adequate here. Note that

16 The parameters 6* and Rey were plotted on logarithmic scales so that the plots from both
the pressure and suction surfaces from all three incidence angles could be plotted using the
same scales.

17 For figure 27 and all the subsequent figures of boundary layer parameters, we include a
dashed line as a visual aid to represent our best estimate of the actual values of the various
parameters. These best estimates result from our experience with the analysis.

18 Crawford and Kays [1976] suggest a value of Reg , between 200 and 300.



94

$32182p (' = # 1o 92ejans aanssad sy

UO JUIdYj20d uoldLY urys pue ‘Jaquuny sploukay ssauydiyy winjudwow ‘iogej adeys 481y ‘ssauydryy awade[dsip Jo uorjerrepy <47 2By

AQHOHI 1N3JH3d AQYOHD 1N3JHIAd

001 08 cw ov (114 0 00l 08 09 ov 0z 0 0
r LTRSS A G 0 r | T T |
v \c -7 \\\ l
v
rd ‘ N
o\ pl
X £
. o 3
- ¢ N
m -1
=2 Q
-1
J,
f T I I i T T T T zot
g ] O.\\\ NO— p.O—
a v o N|\\10H|n@!k|\®\l\a.
‘o Te - @ - ©
£0l O o
H I*
3 3
vc- -c—
NOLINT0S NYYNS HINY IV ¢ NOILNT0S SNV 1S
114 ININds @ Jivwiisiisig - - - -
g0 201




95
the favorable streamwise pressure gradient near the trailing edge causes the boundary layers to

become thinner.

Figure 27 shows how H;, varies with percent chord. Again, the very thin boundary layers
near the leading edge result in questionable calculations using the spline fit. Here the Falkner-
Skan solution gives better results. Note that the STAN5 solution begins to have problems just
before the transition model is activated. As transition begins, the values of H;2 calculated from
the spline fit give the best results. Hi; leaves the laminar regime and enters the turbulent regime

near 68% chord.

Near the leading edge, figure 27 shows that the skin friction for the laminar boundary layers,
as computed with STANS5, begins at “infinity” and then decreases sharply with downstream chord
position. We cannot compute Cy in the transition region downstream of 35.1% chord. To indicate
how large C; might become near the trailing edge, a value based on the spline fit and the Ludweig-
Tillman empirical expression is given for the 97.9% chord location. Use of the Ludweig-Tillman
expression here is not strictly valid, as the boundary layer profile is probably not fully turbulent
at 97.9% chord. Values of §*, Rey, Hia, Cy, and other boundary layer parameters are given for

both the pressure and suction surfaces at i = 5.0 degrees in appendix B.

An attempt was made to fit the boundary layer profile at 97.9% chord to the wall-wake equa-
tion, but no logarithmic region was obtained. Purtell, Klebanoff, and Buckley [1981] concluded
that the logarithmic region seems to be an inherent characteristic of the turbulent boundary layer.
That is, for fully-developed turbulent boundary layers, they found the extent of the logarithmic
region to be roughly a constant fraction of the boundary layer thickness as Rey was decreased.
Murlis, Tsai, and Bradshaw [1982] found strong evidence for the validity of the logarithmic law
of the wall, at zero pressure gradient, for Rey values as low as 700, while Smits, Matheson, and
Joubert [1983] found a logarithmic region, for favorable pressure gradients, at Rey as low as

261. Since no logarithmic region was found for the boundary layer at 97.9% chord, it must be
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concluded that either the boundary layer was not fully turbulent at a Reg of 413, or (less likely)

that the logarithmic region was so small that it could not be detected.

Turbulence intensity data for the pressure surface boundary layer are shown in figure 28. As
the Falkner-Skan approximation has been shown to be reasonable for the profiles to 57.2% chord,
the large turbulence intensities near the wall are disturbing. A typical profile of the skewness
versus y/6*, which is shown for the 5.9% chord location in figure 29, adds considerably to the
problem in that this profile might reasonably resemble the shape of a skewness profile one might

expect to find from measurements of a turbulent boundary layer.

This problem was examined in some detail. Using both calibrated hot-wire probes in the
boundary layer and uncalibrated hot films flush-mounted on the surface, we determined that the
profiles near the leading edge were indeed laminar. Typically, at the edge of these leading edge
boundary layers, the intensity was found to be near 1.5%. Having shown the boundary layers to
be laminar, we next suspected that the intensity measurements might be contaminated by mean-
velocity-gradient broadening. This problem has been considered previously by Edwards, Angus,
French, and Dunning [1971], Goldstein and Adrian [1971], and Kried [1974]. For simplicity in the
current study, the laser intensity was taken to be constant for the entire measurement volume.
In the present case then, error estimates could be easily made by assuming the Falkner-Skan
approximate profiles or by using the smoothed cubic spline fit. Similar results are obtained for
either estimate. In figure 30a, an estimate of the turbulence intensity caused by mean-velocity-
gradient broadening is shown against percent chord for a measurement volume roughly as large
as the volume previously calculated (33 pm). As it seemed plausible that the actual measurement
volume might be larger than the volume found theoretically, we repeated the calculations for a
measurement volume roughly twice that of the estimated volume. These results are shown in
figure 30b. Figure 30 shows estimates for a constant y/6* of roughly 1.70; the measurement
points are also given. It is clear from a comparison of the turbulence intensity calculated from

the velocity-gradient broadening against the measured data, that the gradient broadening alone
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cannot account for the entire intensity. In addition, the skewness when calculated from an

assumption of velocity-gradient broadening is much smaller than that observed experimentally.

As a second approach to the problem, we assumed that in addition to the gradient broad-
ening problem, a small vibration may have contaminated the velocity signal. Calculations are
again straightforward using either the spline fit or the Falkner-Skan approximations. Results for
vibration amplitudes of 25.4 mm and 50.8 mm are again given in figure 30. With the exception
of the points at §.9% chord, which appear to have been biased by an inaccurate calculation of §*
(see figure 27), the calculations agree reasonably well with the data for a measurement volume of
66 mm and a vibration amplitude of 50.8 mm. Comparison between the measured and calculated
skewness is also much closer. Some simple measurements with an accelerometer indicated that
vibration amplitudes of this magnitude were not unreasonable to expect, so that a combination
of velociFy-gradient broadening with a vibration of the measurement volume seems a likely cause
for the elevated turbulence levels. As shown in figure 30 (and as can be shown for the suction
surface turbulent profiles}), the effect becomes quite small as the boundary layer grows. In the
present situation, the bias can probably be considered negligibly small for chord positions larger

than about 25%.

Turbulence intensity profiles are shown for the transitioning boundary layers on the pressure
surface in figure 28. The data show classical shape (see Klebanoff, Tidstrom, and Sargent [1962])
and agree reasonably well with the measurements of Wang, Simon, and Buddhavarapu [1985].
For transitional boundary layers, the peaks in turbulence intensity can be even greater than the
peaks for turbulent boundary layers. Also, these peaks occur at some distance from the blade as

transition begins and move closer to the blade surface as transition progresses.
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Suction Surface for a 5.0 Degree Incidence

All of the measured suction surface boundary layers shown in figure 7 are turbulent. This
implies that transition took place before the measurement station at 2.6% chord, which is not
surprising considering the very large adverse pressure gradient near the leading edge. The sep-
aration of a laminar boundary layer under an adverse pressure gradient results in a free shear
layer, which is unstable. The transition to turbulence takes place very rapidly. Once turbulent
entrainment increases, the shear layer is enlarged which results in a pressure recovery and a rapid

reattachment. Thus, the separation *bubble® can be quite short and close to the leading edge.

Although the transition takes place very close to the leading edge, the recovery process
extends some distance downstream. This process can be seen from the mean-velocity profiles
plotted in dimensionless outer variables. These plots are shown in figure 31 where the normal
pressure gradients have been taken into account as described previously. The recovery process
can be seen to extend through the 2.6% and 7.6% chord locations by observing the shape of the
profiles. As we will show later, the shape of the velocity profiles results in higher values of H;;
during the recovery process. The local turbulence intensity profile at 2.6% chord also indicates
recovery. This turbulent boundary layer was the only one measured at this incidence angle in

which there was a maximum value of local turbulence intensity away from the surface.

The mean velocity data were fit to the wall-wake equation of Coles [1956] through a least
squares technique. Figure 32 shows the velocity profiles in inner variables. The logarithmic region
reaches a maximum and the wake region reaches a minimum at 12.7% chord. This seems to be
a second indication of complete recovery from the leading edge separation “bubble.” Moving
further downstream, we find that II (which controls the size of the wake region) and Rey both

increase. Since the extent of the logarithmic region decreases, II must influence the logarithmic
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region more than Re, for this flow.!® As separation is reached, the logarithmic region disappears

and the wall-wake equation cannot be fit to the data.

Although the influence of surface curvature cannot be extracted from the data, one must
suspect that this influence is indeed present. The convex curvature on the suction surface (0.01 <
|6/Re| < 0.2) and the concave curvature on the pressure surface (0.002 < |6/R.| < 0.02) have
opposite effects on turbulent boundary layers. Ramaprian and Shivaprasad [1977] show that
convex curvature reduces the logarithmic region and increases the relative strength of the wake
component. Except for the initial region of curvature, convex curvature increases the rate of
growth of Rey and decreases C;. Shivaprasad and Ramaprian [1978] claim that the effects of
convex curvature on the behavior of the turbulent boundary layer are even stronger than the
effects of concave curvature at the same value of |6/ Rc|. Their measurements showed that convex
curvature reduces turbulence intensity and Reynolds shear stress. Measurements by So and
Mellor (1973, Gillis and Johnston [1983], and Gibson, Verriopoulos, and Vlachos (1984] agreed.
These results indicate that for very strong convex curvature effects, regions can be found where
turbulence cannot exist. Bradshaw [1969] showed that the behavior of the turbulent boundary
layer is very sensitive to streamline curvature as mild as |6/R.| = 0.003. He used an analogy
between the effects of streamline curvature and buoyancy to estimate quantitatively the effect of
curvature on mixing length distribution in the boundary layer. So [1975] verified this buoyancy
analogy mathematically. Shivaprasad and Ramaprian [1978] made measurements which support
the buoyancy analogy of Bradshaw [1969] for mild convex curvature. For concave curvature, they

found the buoyancy analogy useful only for values of |5/ R.| near 0.01.

After fitting the data to both a spline and the wall-wake equation, we calculated the major
boundary layer parameters (as seen in appendix B). Calculations from both types of fits give
similar results. As shown in figure 33, the displacement thickness increases gradually at first

and then increases rapidly through separation. Figure 33 also shows this growth in the plot of

19 Refer back to figure 23 for the influence of IT and Rey on the extent of the logarithmic region.
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Reg. All of the values of Rey are greater than 1200, even near the leading edge, and this again
indicates that all of the boundary layers are turbulent. Figure 33 shows turbulent values of H 12
beginning near the leading edge. Recovery from the leading edge separation “bubble” results in
an initial decrease of H;,. Separation of turbulent boundary layers is usually approximated using
values of H); near 2.2 which corresponds here to a suction surface location near 59.0% chord.

Sandborn and Kline [1961] proposed a relation for intermittent separation,

p—

Hi3 = 1+

—
|
en,°.‘

which yields 87.4% chord (corresponding to H,, = 2.73) as the location of intermittent separation

for the data presented here.

Values of C; come directly from the least aquares fit of the data to the wall-wake equation
while the spline fit calculations must use the Ludweig-Tillman equation. From Figure 33, values
of Cy appear to be near zero at the leading edge which corresponds to the vanishing skin friction
at the beginning of the leading edge separation “bubble.” Cy reaches a maximum after the
boundary layer has totally recovered from the leading edge separation and then decreases as
the trailing edge separation of the turbulent boundary layer is reached. Cy vanishes near 81.5%

chord.

Attempts to compute boundary layer parameters from numerical solutions using STANS
failed. Starting with a laminar solution fails because separation occurs immediately-as expected.
Starting with a turbulent solution gives poor results since an “infinite” value of C; is computed
at the leading edge instead of the actual value of gero. Also, a problem arises from our use of
the measured blade static-pressure distribution as a boundary condition for STANS, which is
a parabolic computer code. Physically, the trailing edge separation leads to a decreasing and
eventually vanishing adverse pressure gradient. STANS sees the decreasing adverse pressure
gradient as a change in the inviscid core flow between the blades and thus manages to avert the

trailing edge separation altogether.
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Defining separation as the entire process of the breakdown of boundary layer flow, Simpson,
Chew, and Shivaprasad [1981a] quantified the various stages of separation with the maximum in-
stantaneous backflow. Incipient detachment occurs with 1% instantaneous backflow; intermittent
transitory detachment occurs with 20% instantaneous backflow; transitory detachment occurs
with 50% instantaneous backflow; and detachment occurs when the wall shear stress becomes
gero. The percent backflow is easily calculated as the portion of the measured velocity distribu-
tion that includes negative velocities. Figure 34 shows the instantaneous backflow measurements
at several distances from the blade as a function of percent chord. Using the nomenclature of
Simpson, Chew, and Shivaprasad [1981a], we can locate incipient detachment at 61.1% chord,
intermittent transitory detachment at 69.1% chord, and transitory detachment at 83.7% chord.
The sublimation flow visualization tests showed separation to occur at 65.6% + 3.5% chord, and
a comparison with the maximum instantaneous backflow data of figure 34 shows that flow visu-
alization yields a value for separation which is only slightly downstream of incipient detachment.
Locating turbulent separation by observing when H;2 nears 2.2 also seems to indicate incipient
detachment. We might note that although Simpson, Chew, and Shivaprasad [1981a] state that
detachment and transitory detachment need not be at the same location, our skin friction cal-
culations show that the chordwise locations of detachment and transitory detachment are quite

close to one another.

Restrictions in applying the wall-wake equation in the vicinity of separation result from the
velocity scale, u,, approaching zero. A vanishing u, leads to a vanishing logarithmic region,
which would not cause concern if the separated flow profiles would follow the law of the wake.
Unfortunately, experimental data prove otherwise (see Simpson, Chew, and Shivaprasad [1981a]
for example). Schofield [1983,1986] extended the model of Perry and Schofield [1973] to de-
tached flows by suggesting that the similarity would hold provided that the origin of the normal

coordinate has been moved from the wall to the location (away from the wall) at which u = 0.
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The suction surface boundary layers are plotted using the similarity relation of Perry and
Schofield [1973] in figure 35. In the outer 90% of the boundary layer, the similarity relation
collapses the data quite well for chord locations upstream of the separated region. As the amount
of instantaneous backflow increases, however, the data deviates more and more from the similarity
relation. This deviation is in seeming contrast to the conclusions made by Schofield [1983,1986).
A close examination of his defect plots, however, shows similar trends in his analyzed data and
the data shown in fi‘gure 35. The wall-wake equation appears to be the best of the similarity

techniques for profiles approaching detachment.

No outer region similarity seems to exist downstream of detachment. Many researchers
have attempted a law of the wake correlation without success (see Simpson, Chew, and Shiv-
aprasad [1981a] for example). For a turbulent boundary layer subjected to a streamwise pressure
gradient, Mellor and Gibson [1966] suggested replacing the shear velocity with a pressure ve-
locity, (6*/p)(dp/dz), as the velocity scale. However, Schofield [1981] has shown this scaling
to be inadequate. Using the velocity scale corresponding to the maximum shear stress as sug-
gested by Schofield [1983,1986] has been shown to give poor similarity in figure 35. Mehta and
Goradia [1984] had some success by assuming the outer region velocity profile behaves like a
two-dimensional mixing layer. Their similarity variables were not found to give outer region

similarity with the data measured here.

Similarity in the backflow region seems to show more promise. Simpson, Chew, and Shiv-
aprasad [1981a] found good backflow similarity by normalizing the velocity by the maximum
backflow velocity, and the distance from the wall by the distance to the maximum backflow ve-
locity. Schofield [1983,1986] found that this backflow similarity could be improved by using the
total backflow thickness as the length scale. Figure 36 shows this backflow similarity for the data
at 94.9% chord. Despite the scatter, the backflow data seems to collapse fairly well with the

data measured by Simpson, Strickland, and Barr [1977] and Simpson, Chew, and Shivaprasad
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[1981a]. The only exceptions are the two data points closest to the wall-data for which the 95%

confidence bands are larger than the magnitude of the mean velocity.

The turbulence intensity on the suction surface is shown for all 11 chord positions in figure
37. Recovery from the leading edge separation is apparent from the peaks in turbulence intensity
that occur away from the surface for the 2.6% and 7.6% chord locations. These peaks also
occur in the separation region from 63.2% chord through 94.9% chord. This shape reflects the
movement in the location of the maximum mean-shear rate outward from the near-wall region.
Close to the blade surface at 94.9% chord, in the region with mean backflow, the 95% confidence

bands are very large.

Wakes for a 5.0 Degree Incidence

Figure 8 shows the measured near wakes at 105.4% and 109.6% chord and the measured far
wake at 152.6% chord. Wakes become similar only at distances far downstream of their source.
A Gaussian distribution can be used to correlate these far-wake data. Lakshminarayana and

Davino [1980] suggested the correlation

Ue — u _ ,—0.693n2
—_— =
Ue — Ugy

where 7 is the normalized distance across the wake. The suction and pressure sides of the wake use
different length scales, L, and Lp. L, and L, are the distances on the suction and pressure sides
of the wake centerline from the point of minimum velocity to a point where the velocity defect is
3(Ue — uy). The far-wake data of Lakshminarayana and Davino [1980] showed similarity away
from the wake edge for both inlet guide vane wakes and stator blade wakes. This similarity was
corroborated by Hobbs, Wagner, Dannenhoffer, and Dring [1982] for distances greater than 30%

axial chord downstream of the trailing edge of their compressor cascade blades. Figure 38 shows
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that our wake data has Gaussian similarity in the far wake. However, the two near-wake profiles

exhibit no similarity.

Integral parameters can be calculated from the wake velocity profiles. Using the location of
the wake centerline and displacement thicknesses on either side of the centerline, the displacement
surface can be drawn as seen in figure 39. The curvature of the displacement surface in the near-
wake region can be explained by the pressure difference between the two blade surfaces at the
trailing edge. The location of the displacement surface in the far-wake region can be partly
explained by the large amount of separation on the suction surface of the neighboring blades.
However, another explanation for this curvature of the displacement surface in the far-wake region
is the confinement of the far wakes between the two tailboards. The effects of the tailboards must

be taken into account when considering this displacement surface for wake modeling.

Turbulence intensity profiles are presented for the two near wakes in figure 40. As with the
turbulence intensity profiles in the separating boundary layers, the turbulence intensity peaks
are displaced outward, essentially tracking the regions of large mean-velocity gradients. These
data, although more detailed, are quite similar to the data of Hah and Lakshminarayana [1982]
for the near wake of an isolated airfoil. As was the case at 94.9% chord, a large amount of scatter

exists in the turbulence intensity data within the regions of mean backflow.

Pressure Surface for a -1.5 Degree Incidence

The blade static-pressure distribution of figure 10 and the measured velocity profiles of
figure 11 showed some differences between the pressure surface flow fields for i = —1.5 degrees
and ¢ = 5.0 degrees. After accounting for the normal pressure gradient and determining U,
and 8*, we plotted the velocity profiles in outer variables in figure 41. Figure 41 also shows

a Falkner-Skan solution for the first four chord positions. For the boundary layers at 4.3%
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and 9.7% chord, the comparisons between the data and the Falkner-Skan solution are poor
because the calculated values of 6* used to normalize y are questionable in these extremely
thin boundary layers. Comparisons at 20.5% and 30.3% chord show a continuing decrease in
streamwise momentum of the measured profiles relative to the Falkner-Skan profiles: Falkner-
Skan solutions could not be computed at 40.0% chord and downstream since the values of 3
indicated that laminar boundary layers would separate at these chord locations. The profiles at
40.0% and 49.7% chord are similar to the profiles on the suction surface at { = 5.0 degrees where

the boundary layers are recovering from a leading edge separation “bubble.”

At chord locations 49.7% chord and downstream, we successfully fit the data to the wall-wake
equation. The fits at 49.7% chord and 55.1% chord, however, were marginal. Figure 42 shows
the turbulent-like boundary layers plotted in inner variables. The wake region vanishes near the
80.0% chord location (II=0). Downstream, the values of II become negative—corresponding to
the increasingly strong favorable streamwise pressure gradient. After calculating values of 6*, we
compared the data to the similarity defect law of Perry and Schofield [1973]. These comparisons
were good at 49.7% and 55.1% chord and reasonable at 60.5% chord. Further downstream, the
increasingly strong acceleration made it impossible to determine the velocity scale U, from the

half-power equation—giving no Perry-Schofield similarity.

A review of the sublimation flow visualization results show a region of low shear stress be-
tween 14.0% = 5.5% chord and 38.2% + 5.2% chord. These results, in conjunction with the outer
variable plots of figure 41, seem to indicate the presence of a laminar flow separation “bubble”
with at least a partial transition to turbulence. Completion of the transition to turbulence may
take place downstream of the separation “bubble.” This speculation may seem strange since we
found no flow reversal in any of the boundary layers measured on this surface. Later results,®
however, seem to indicate that we may not have penetrated the boundary layers far enough to

find any backflow. The empirical relationships of Abu-Ghannam and Shaw [1980] place the onset

20 See the discussion of the boundary layers on the suction surface when i = —8.5 degrees.
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of transition at 40.6% chord. This location may be in the correct vicinity, but we should ignore
it since these empirical relationships come from data of “natural” transition with no separation
“bubble.” Transition, however, does take place. Because the transition to turbulence results in
boundary layers with more streamwise momentum, a plot of mean velocity versus percent chord
at a fixed distance above the blade surface can help determine the location of transition. Figure
43 shows this plot for y = 0.254 mm. The intial decrease corresponds to boundary layer growth.
A sharp rise from the 55.1% chord location to the 70.3% chord location corresponds to transi-
tional boundary layers. Unlike figure 26 for i = 5.0 degrees, the mean velocity stops increasing

and begins decreasing-indicating that transition to turbulence is complete.

In order to better determine the locations of separation and transition, we computed integral
parameters using spline fits of the data, Falkner-Skan solutions, a STANS solution, and least-
squares fits of the data to the wall-wake equation (see appendix B). The plots of 6* and Rey in
figure 44 give only a little evidence of any separation or transition. Upstream of the 40.0% chord
location, spline fits of the very thin boundary layers give questionable values of the integral
thicknesses and the STANS5 solution seems to be the most reliable. At 30.4% chord, STANS
computes a Hey of 250 and activates its transition turbulence model. At 36.5% chord, the
STANS solution fails to converge-indicating the onset of separation. Downstream of the 40.0%
chord location, the calculations using both the spline fits and the wall-wake fits give similar
results. Note that the boundary layers become thinner near the trailing edge as the streamwise

pressure gradient becomes more favorable.

Just before the separation “bubble” is reached and the STANS solution diverges, a sharp
rise in H;, occurs as seen in figure 44. Separation of a laminar boundary layer is normally
approximated when H;; = 3.5 and this corresponds to 35.1% chord. Downstream of the peak
value of H)2 (near 37.3% chord where H; &~ 3.9), the values of Hy, do not leave the laminar

regime and enter the turbulent regime until 52.0% chord.
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The clearest indication that a separation “bubble” truly exists is shown in the plot of skin
friction coefficient in figure 44. Observing the STANS solution, we see that C; starts at “infinity”
at the leading edge, decreases rapidly, and finally vanishes near 37.3% chord. Downstream, the
values of C'y computed from a fit of the wall-wake equation increase rapidly as we might expect
of transitional boundary layers. A further increase in C; occurs near the trailing edge where a
large favorable pressure gradient exists. We decided to use the values of C; that come directly
from the fit of the wall-wake equation, since the calculations using the spline fit must employ the

Ludweig-Tillman equation which may not be valid in this region.

The plots of turbulence intensity in figure 45 show similar trends to the turbulence intensity
plots in figure 28 for the pressure surface boundary layers when i = 5.0 degrees. The intial
boundary layers had velocity distributions with larger standard deviations than one would deem
as physically possible for laminar boundary layers. As we discussed previously, the reason for
these enlarged velocity distributions is not turbulence intensity, but a combination of mean-
velocity-gradient broadening and a vibration of the LDV measurement volume. From 30.3%
chord to 60.5% chord, a peak in turbulence intensity occurs away from the blade. Then, as the
transition to turbulence ends, the the peaks move closer to the blade surface. These peaks move

to the blade surface sooner for i = —1.5 degrees than for : = 5.0 degrees.

Suction Surface for a -1.5 Degree Incidence

After observing the measured velocity profiles of figure 12, we concluded that the suction
surface boundary layers for i = —1.5 degrees and i = 5.0 degrees were similar. Both surfaces
included a leading edge separation “bubble” and a trailing edge separation of the turbulent

boundary layer. However, the turbulent boundary layers for i = —1.5 degrees were thinner
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because of the small region, with a favorable streamwise pressure gradient, from 3% chord to 9%

chord.

Since all the boundary layers on this surface were turbulent, we fit all of the profiles to both
a spline and the wall-wake equation. Figure 46 shows the velocity profiles in outer variables while
figure 47 shows the profiles in inner variables. The outer variable plot shows us another difference
between this flow field and the suction surface flow field for ; — 5.0 degrees. The boundary layers
immediately downstream of the leading edge separation “bubble” do not show signs of recovery-
even though the boundary layers have clearly transitioned to turbulent. The small region of
accelerated flow seems to have hastened the recovery process. Downstream, the boundary layer
at 60.2% chord shows a slight inflection; the inflections become larger and finally negative mean
velocities become evident at 90.3% chord. Another difference in the suction surface boundary
layers for i = —1.5 degrees and i = 5.0 degrees is evident in the inner variable plots of figures 47
and 32, respectively. While the wall-wake equation fit the data for i = 5.0 degrees well for all
the boundary layers prior to detachment, we see that this is not the case for i = —1.5 degrees.
The boundary layers at 7.3% and 9.3% chord have a substantjal logarithmic region and fit the
wall-wake equation well. For 14.5% and 19.7% chord, the logarithmic region becomes quite small
and the fit to the wall-wake equation worsens. While we could fit the boundary layers at 30.1%,
40.5%, and 49.8% chord, the fits were poor and no discernable logarithmic region is evident.
Further downstream, the boundary layers at 60.2% and 70.6% chord fit the wall-wake equation

well in the region just upstream of detachment.

Both the wall-wake and spline fits were used to compute various boundary layer parameters
(see appendix B). Figure 48 shows the boundary layer growth in terms of §* and Reg. Except
that the boundary layers are thinner, they grow in much the same manner as the suction surface
boundary layers for : = 5.0 degrees. The shape factors in figure 48 show turbulent values from
the leading edge until 62.0% chord where the & 12 takes on a value of 2.2-an initial indicator of

turbulent separation. Using the relation of Sandborn and Kline [1961] for intermittent separation
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gives a location of 70.9% chord and a first shape factor of 2.73. Both of these indicators show
separation for ¢ = —1.5 degrees to be slightly downstream of the corresponding locations for
i = 5.0 degrees. Remember that the flow visualization showed a region of low shear stress at
45.1% + 2.3% chord-indicating that separation for i = —1.5 degrees is slightly upstream of
separation for i = 5.0 degrees. Because of the difficulty in finding a satisfactory run time for the
flow visualization tests, we might conclude that locating separation from flow visualization is less

accurate than locating separation by analyzing the LDV data.

Figure 48 shows how the skin friction coefficient changes with chord location. Similarly to
the suction surface for i = 5.0 degrees, Cy is zero at the leading edge because of the separation
“bubble.” The values of Cy rise sharply to a peak value larger than was the case for i=25.0
degrees: Again, we might expect this larger value of C; because of the region of accelerated flow.
The skin friction vanishes near 85.8% chord. Unfortunately, the calculations of C; using the
spline fit and the Ludweig-Tillman equation give smaller and more scattered values. Despite the
very small logarithmic regions in many of the boundary layers, we still have more confidence in

the values of C; that come directly from fitting the data to the wall-wake equation.

Since separation of turbulent boundary layers occurs over a finite region and not just where
Cy = 0, we can examine the entire process of separation by plotting the instantaneous backflow
in figure 49. Figure 49 shows the instantaneous backflow at each LDV measurement station for
several distances from the blade. The data are very similar to the data in figure 34 for i = 5.0
degrees. Using the definitions of Simpson, Chew, and Shivaprasad [1981a], we can locate incipient
detachment at 60.8% chord and intermittent transitory detachment at 72.1% chord. The position
where /{15 = 2.2 seems to indicate incipient detachment while the relation of Sandborn and Kline
[1961] seems to indicate intermittent transitory detachment. Also, transitory detachment occurs
at 82.1% chord-very near the detachment point where C; = 0. These indications of the various

stages of turbulent separation agree with the results on the suction surface for i = 5.0 degrees.
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As we did for the suction surface at i = 5.0 degrees, we can examine the similarity of the
velocity profiles at i = —1.5 degrees. Just as the fits to the wall-wake equation became slightly
worse for the second incidence angle, the boundary layers for each incidence angle also showed
worse similarity using the relation of Perry and Schofield [1973|, as seen in figure 50. Again, the
data deviates more and more from the similarity relation as the amount of instantaneous backflow
increases-leading to no outer region similarity downstream of detachment. The mean backflow
data at 90.3% chord has been plotted nondimensionally along with the mean backflow data at
94.9% chord for i = 5.0 degrees in figure 36. The velocity scale is the maximum backflow velocity
and the length scale is the total backflow thickness. Both sets of data show some similarity when
plotted in this manner. The data collapses fairly well with the curve that represents the average
of several data sets measured by Simpson, Strickland, and Barr [1977] and Simpson, Chew, and

Shivaprasad [1981a).

Some final physical insight can be obtained by observing the turbulence intensity plots of
figure 51. With one exception, these plots look very similar to the turbulence intensity plots
in figure 37 for the suction surface when i = 5.0 degrees. Again, the small region with a
favorable streamwise pressure gradient seems to have accelerated the recovery from the leading
edge separation “bubble.” Therefore, the maximum mean-shear rate remains very close to the
blade surface and the maximum turbulence intensity will also remain very close to the blade
surface. Just like the turbulence intensities for i = 5.0 degrees, the turbulence intensities for
t = —1.5 degrees track the location of maximum mean-shear rate in the turbulent separation
region and the peaks move away from the blade surface. Notice the very large 95% confidence

bands at 90.3% chord when the mean velocities become negative.



133

U,.-u
US
0 025 050 G.75 1.0 0O 025 0.s0 0.75 1.0
y/B y/B
Figure 50. Reconstructed suction surface boundary layers for 1 = —1.5 degrees in defect form

with Perry-Schofield similarity



134

25 r— —

20 L

15 - S
I

’°§

"':':._
0 -
- T 90.3% CHORD
z SIS 30.1%
o joa8 =
- Eel " EHEEEBEEBEE
z o
€S 0
[SY]
2 0 80.0%
w
54 o8 19.7%
R
c 4] 8B 8 B B
>
*[o E 14.5% 70.6%
%_ =5 =] =
0 _%.
5 I ! 9.4%
1 E = B
ok %
gull
5 3 7.3% 49.8%
B 2 8 = B SZesttiiiT o —acocoees
0 . ! ! ! ! 1 1 ) y
0 4 8 12 16 20 O 4 8 12 16 20
Y/B. yla'

Figure 51. Turbulence intensity data for the suction surface boundary layers at i = —1.5 degrees



135

Wakes for a -1.5 Degree Incidence

A similarity analysis of the near and far wakes in figure 13 give results resembling the results
for i = 5.0 degrees. As seen in figure 52, the near wakes at 106.0% and 109.7% chord fail to show
similarity with the Gaussian distribution of Lakshminarayana and Davino [1980]. Similarity does

hold for the far wake at 131.9% chord.

After calculating the integral parameters for the near and far wakes, we located the boundary
layers and wakes on a schematic of the cascade blades in figure 53. Since the displacement of the
freestream fluid is smaller for i = —1.5 degrees than for i = 5.0 degrees, the wake is not forced
to migrate as far from the extended chord line. Some strong curvature of the wake centerline is
evident in the near-wake region and this indicates that some trailing edge loading does exist (as

geen in the blade static-pressure distribution in figure 10).

Turbulence intensity profiles for the two near wakes are shown in figure 54. These profiles
look very similar to the near wake profiles for i = 5.0 degrees. Both sets of profiles show
asymmetric wakes with the turbulence intensity peaks displaced from the wake centerline. All of

these wakes show a large scatter in turbulence intensity data in the regions of mean backflow.

Pressure Surface for a -8.5 Degree Incidence

From the blade static-pressure distribution in figure 15, we can see that the large adverse
pressure gradient near the suction surface leading edge for the 5.0 and -1.5 degree incidence an-

gles has shifted to the pressure surface leading edge for the -8.5 degree incidence angle. Thus, the
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separation “bubble” is now on the pressure surface as indicated with the oil film flow visualiza-
tion. This separation “bubble” leads to an immediate transition and causes all of the measured
boundary layers in figure 16 to be turbulent. After accounting for the normal pressure gradient,
we fit each velocity profile to both a spline and the wall-wake equation. Figure 55 shows the
outer variable plots of all eleven boundary layers. Despite the expected transition caused by the
leading edge separation “bubble,” the first few boundary layers are very thin and only a few
data points were acquired within the boundary layer. Because of these very few data points, we
find it difficult to observe any evidence of a recovery from the leading edge separation “bubble.”
Downstream, all of the profiles look like typical turbulent boundary layers. The inner variable
plots in figure 56 are also typical of turbulent boundary layers. The wake region is quite small
for all of the boundary layers—although the size of the wake region is probably distorted near
the leading edge because of the very few data points. Also, we could not compute U, near the
leading edge because of the very few data points. At 30.3% chord and downstream, the velocity

profiles in defect form showed only fair similarity using the relation of Perry and Schofield [1973].

Data fits to both a spline and the wall-wake equation were used to calculate various boundary
layer parameters as compiled in appendix B. Figure 57 shows the boundary layer growth in terms
of §* and Rey. The boundary layers grow rapidly at first and then grow with a decreasing rate
until the favorable streamwise pressure gradient near the trailing edge causes the boundary layers
to become thinner. The values of Rey also present a dilemma. While we expect all turbulent
boundary layers on this surface, the values of Rey for the first few boundary layers seem too
small to support turbulence. Recall that Murlis, Tsai, and Bradshaw [1982] found no logarithmic
region, at zero pressure gradient, for Reg less than 700 and Smits, Matheson, and Joubert [1983]
found no logarithmic region, at favorable pressure gradients, for Reg less than 261. Near the
leading edge, we could expect even larger minimum values of Rey since the streamwise pressure
gradients are adverse. However, despite the limited amount of data, we did fit all of the boundary

layers to the wall-wake equation even though Rey did not reach 700 until 49.7% chord.
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The first shape factor plot in figure 57 shows another interesting development. The values
of Hy; for all of the boundary layers lie within the turbulent regime when we use-the fit to the
wall-wake equation for calculating H;;. However, when we use the spline fit to calculate H 12,
the boundary layers through 20.5% chord show values larger than 2.2. As seen in figure 57,
differences also occur in calculating C; when using the two types of fits. From analyzing the
boundary layers on the previous surfaces and incidence angles, we have found that obtaining
Cy directly from fitting the data to the wall-wake equation gives better results than obtaining
Cy from the spline fit and Ludweig-Tillman equation. Since a leading edge separation “bubble”
must exist, C; should be zero very close to the leading edge. We assume then that Cy must
rise to the value at 9.7% chord as obtained from the fit to the wall-wake equation—even though
the values of C; calculated this way do not imply a zero value of C 't at the leading edge. The
recovery from the leading edge separation “bubble” may be complete before 9.7% chord. The
values of Cy calculated from the spline fit and the Ludweig-Tillman equation do imply a zero
value of C; at the leading edge. However, these values fail to show the expected trends at other
blade locations. Using the fit to the wall-wake equation, we see that C; does decrease in the
region of adverse pressure gradient, level off as the pressure gradient diminishes, and increase

near the trailing edge where a favorable pressure gradient exists.

The turbulence intensity plots of figure 58 show typical results in the absence of transition
and separation regions. The maximum value of turbulence intensity for all of these boundary
layers lies very close to the blade surface. Note that the boundary layers close to the leading

edge do not show any signs of the recovery from the leading edge separation “bubble.”
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Suction Surface for a -8.5 Degree Incidence

Recall that a strong favorable streamwise pressure gradient was found on the first 18%
chord of the suction surface for i = —8.5 degrees (see figure 15). Expecting laminar boundary
layers within this region, we found that the boundary layers at 10.4% and 19.7% chord were too
thin to measure. Without these measurements, we could only use our Falkner-Skan and STANS
solutions to study the behavior of the leading edge boundary layers. For all of the remaining
boundary layers of figure 17, we fit the data to splines (after accounting for the normal pressure
gradient) and attempted to fit the data to the wall-wake equation. After this initial analysis, we
plotted the velocity profiles in outer variables in figure 59. The data at 30.1% chord compare
very well to the Falkner-Skan solution which indicates the boundary layers remain laminar until
this location. The Falkner-Skan solution failed at 40.5% chord and the outer variable plot here
showed a slight point of inflection. At 49.8% and 55.0% chord, the outer variable plots showed
that the boundary layers were separated. The boundary layer seemed to have recovered by
60.2% chord which signified the presence of a separation “bubble.” Downstream, the boundary
layers appeared turbulent and eventually, the adverse pressure gradient led to a slight point of
infection in the profile at 97.6% chord. The inner variable plots of figure 60 show that we were
able to fit all of the boundary layers from 60.2% chord to 97.6% chord to the wall-wake equation,
but only the boundary layer at 70.6% chord gave a convincing fit. We can conclude that the
separation “bubble” caused the laminar boundary layer to transition to turbulence. However,
the recovery from this separation “bubble” and the near separation of the trailing edge turbulent
boundary layer lead to a very small logarithmic region for most of the turbulent boundary layers

downstream of reattachment. Also, we could only find the velocity scale U, at 70.6% chord and
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beyond-and even for these boundary layers, only the boundary layer at 97.6% chord showed

reasonable agreement with the similarity relation of Perry and Schofield [1973].

The boundary layer growth on this surface is dominated by the existence of a substantial
separation “bubble.” The chordwise variation of 6* in figure 61 shows a sudden rise in the
boundary layer growth after the 30.1% chord location. The growth levels off and then suddenly
§* decreases until just downstream of the 60.2% chord location. This type of shape led to the term
separation “bubble.” Since the separation “bubble” leads to a rapid transition to turbulence,
we expect to see a sharp rise in Rey just before reattachment. Figure 61 shows' this sharp rise
between the 55.0% and 60.2% chord locations. The STANS5 solution fails to predict any evidence
of separation. After the initially laminar boundary layer, STANS5 predicts that the adverse
streamwise pressure gradient will induce a “natural” transition between 22.9% and 44.2% chord.
The numerical solution predicts no “bubble” shape in the chordwise 6* variation and only a

gradual rise in Rep from the laminar region to the turbulent region.

The variation of H,z in figure 61 shows the most dramatic representation of the separation
“bubble.” Near the leading edge, the Falkner-Skan and STANS solutions show values of Hs
in the laminar regime. Calculations using the spline fit, as well as the Falkner-Skan solution,
show Hi, increasing at the 30.1% chord location. Hi2 continues to rapidly increase-according
to the spline fit calculation-with a laminar separation value of 3.5 occurring near 31.9% chord.
As was the case of 6*, H,, peaks near 51.9% chord at a value near 5.8. Between the 55.0%
and 60.2% chord locations, Hy, drops very rapidly as the separation “bubble” induces a sudden
transition to turbulence. The values of H )5 enter the turbulent regime near 59.0% chord. From
70.6% chord through 90.3% chord, Hi remains nearly constant before rising to the turbulent
separation value of 2.2 at the trailing edge. Again, STANS gives values of H; that decrease in

a region of “natural” transition since no separation “bubble” was predicted.

The STANS5 solution gives the values of C; near the leading edge. As shown in figure 61, Cy

decreases asymptotically from “infinity” at the leading edge. As it did for the other boundary
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layer parameters, however, STANS5 predicts a “natural” transition which results in a sharp rise
in Cy. In actuality, this sharp rise in C; should be delayed until C vanishes. Then, as transition
takes place, C; should rise to the values obtained from fitting the data to the wall-wake equation.
After the 70.6% chord location, C; decreases in the region of adverse streamwise pressure gradient
and approaches a value of zero as the turbulent separation process begins near the trailing edge.
Even using the LDV data and the numerical and analytical solutions, we still cannot obtain
accurate magnitudes for the values of C; in the vicinity of the separation “bubble.” In fact,
C; might even become negative within the “bubble.” Taking the values shown in figure 61, our
best estimate of the magnitudes of C; were later used in obtaining a rough calibration of our

flush-mounted, hot-film probes.

On this surface, surface flow visualization tests proved especially useful in determining the
location of the separation “bubble” as well as the location of peak transition within the “bubble.”
To 95% confidence, the oil film method placed the location of laminar detachment at 35.3% +
2.0% chord and turbulent reattachment at 59.8% + 2.3% chord. The chemical sublimation
method located the peak transition at 56.0% + 0.8% chord, to the same level of confidence.
The oil film method also showed a possible separation of the turbulent boundary layer near the
trailing edge. Note that the chemical sublimation method indicated transition for this separation
“bubble” and separation and reattachment for the very small separation “bubble” on the pressure

surface for i = —1.5 degrees.

To help locate the transition region within the separation “bubble,” figure 62 shows a plot
of mean velocity versus percent chord at a fixed distance above the blade surface (v = 0.508
mm). Most of the transition process takes place between 55.0% and 60.2% chord where a sharp
increase occurs in mean velocity. Transition seems complete beyond the 70.6% chord location as

the mean velocity decreases from this location to the trailing edge.

Besides the mean velocity data, the LDV measurements also provide information on flow

reversal. Figure 63 shows the chordwise variation of percent backflow at several different distances
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from the blade surface. Again, the backflow data between the 40.5% and 60.2% chord locations
give the appearance of a “bubble.” For all distances from the blade surface, the maximum percent
backflow occurs at the 55.0% chord location where a value of 46.7% can be found 0.254 mm from
the blade surface. However, larger values of maximum percent backflow might occur closer to the
blade surface. For only one chord location could we measure the velocity closer than 0.254 mm
from the surface with the LDV. At 49.8% chord, the percent backflow rose from 14.1% to 60.3%
as we moved the LDV measurement volume from y = 0.254 mm to y = 0.127 mm. The major
region of flow reversal seems to occur very close to the blade surface. This same flow phenomena
seems to account for our failure to measure any backflow on the pressure surface at i = —1.5
degrees where a very small separation “bubble” almost certainly exists. Finally, as the turbulent
boundary layer near the trailing edge approaches separation, we measured some backflow at
97.6% chord-leading to an incipient detachment point (with 1% instantaneous backflow) near

91.7% chord.

Figure 64 shows how the turbulence intensity profiles vary with chord location. Within the
initial laminar boundary layers, the turbulence intensity levels are low-the problems with mean-
velocity-gradient broadening and vibration of the LDV measurement volume are not evident
since we just barely penetrated these boundary layers. By 30.1% chord, the levels of turbulence
intensity rise, with a peak value located away from the blade surface. This trend continues
through 60.2% chord as expected in regions of transition and separation. Note the small turbu-
lence intensity very close to the blade surface at 49.8% chord. This location corresponds to the
point of maximum H;, and percent backflow, just as the separation “bubble” induces transition
to turbulence. Beyond 60.2% chord, the peak in turbulence intensity lies very close to the blade
surface since the boundary layers are fully turbulent. Near the trailing edge, at 97.6% chord, the
peak once again moves away from the blade surface as intermittent separation of the turbulent

boundary layers has begun.
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For most of the surfaces evaluated here, transition results from the occurrence of a separation
“bubble” as opposed to the occurrence of “natural” transition. Although it is quite small, the
separation “bubble” on the suction surface for i = —8.5 degrees appears to be large enough to
warrant further investigation. Before proceeding, however, let us review some other experiments
involving separation “bubbles.” These experiments have led to our current knowledge concerning
the physics of separation “bubbles.” Some have contributed to models of the size and location of
the “bubbles” as well as transitional aspects, turbulence characteristics, and the recovery of the
reattached boundary layer. In addition, we shall examine the unsteady and three-dimensional

aspects of separation “bubbles.”

A laminar boundary layer separates when it encounters an adverse pressure gradient of suf-
ficient magnitude. The laminar shear layer breaks away from the surface leaving a stagnant
region between the shear layer and the surface. Our data acquisition supported this occurrence
since it proved very difficult to entrain seeding particles into this region. Except for the close
proximity to a solid surface which can damp out disturbances, the laminar shear layer behaves
according to inviscid stability theory with curved streamlines. Basically, the inflectional velocity
profile is inherently unstable, although the convex curvature of the streamlines could offer some
stability. Disturbances should amplify and cause transition over a very short region. The in-
creased momentum transfer due to turbulent mixing eventually eliminates the reverse flow near
the surface and the flow reattaches. Figure 65 shows a sketch of a typical separation “bubble”
and the corresponding pressure distribution. If the “bubble” is large enough, one can expect the
adverse pressure gradient to vanish in the upstream portion of the “bubble” since this flow cannot
sustain a pressure gradient. However, the short region of transition energises the flow causing an
increase in static pressure. In our measurements, all of the separation “bubbles” proved to be

too small to cause a recognizable change in the pressure distribution.

Very little data are available concerning separation “bubbles” on blades within a turboma-

chine or a cascade. However, several researchers have studied separation “bubbles” on isolated
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airfoils. O’Meara and Mueller [1987] performed parameter studies to help create empirical mod-
els of separation “bubbles.” Their low Re. airfoil had a minimum pressure point near the leading
edge of the suction surface-similar to our cascade blade-that led to a separation “bubble.” As one
might expect,'the severity of the adverse pressure gradient near the leading edge of the suction
gurface determines the size and location of the separation “bubble.” They noted that increases
in chord Reynolds number and freestream turbulence lead to a more pronounced minimum in
static pressure near the leading edge of the suction surface and thus reduce both the length
and thickness of the separation “bubble.” It is generally recognized that increases in freestream
turbulence reduce the length of the separation “bubble” for various test geometries (for example,
see Nakamura and Osono [1987] and Castro and Haque [1988]). Comparing the results of Arena
and Mueller [1980], O'Meara and Mueller [1987], and Brendel and Mueller [1988] give no clear
indication of the effect of incidence angle on the size and location of separation “bubbles.” Since
the local streamwise pressure gradient essentially controls these characteristics, the blade shape

and Re, affect how variations in incidence angle change the local pressure gradient.

Since transition results from the inherently unstable shear layer that has separated from
the surface, we can make an analogy between transition caused by separation “bubbles® and
transition caused by surface roughness. For various types of roughness with some characteristic
height, h, a large enough ratio of h to the displacement thickness at separation, ), can cause
local transition before reattachment. Crimi and Reeves [1976] and O’Meara and Mueller [1987]
used a roughness analogy to find h/6; as a function of 6;U., /v where h is some required height
of the separation “bubble” to cause transition before reattachment. O’Meara and Mueller [1987]
also give empirical functions to find the lengths of laminar, transitional, and turbulent flow within
the separation “bubble” relative to the total length of the “bubble.” Goldstein, Eriksen, Olson,
and Eckert [1970] found empirical criteria for transition within the flow over a downstream-facing
step. For a step of height h, they found that transition would occur before reattachment if either

h/6: > 2.5 or hU., /v > 520.



158

Much of the data involving separation “bubbles” involves the size, location, and transitional
aspects of the “bubbles.” These data help in the formation of empirical models. Other re-
searchers have been concerned with turbulence characteristics in order to both understand the
physics and create appropriate turbulence closure models for the time-averaged governing equa-
tions. The low Re, airfoil, LDV data of Bell and Cornelius [1987] show similar trends of §*,
@, Hy5, and Vu? /Ue to the data presented here. Figure 65 shows a result reported by several
investigators: The maximum value of Vu'? /U, can occur well away from the surface—essentially
near the center of the shear layer since the velocity profiles have a point of inflection there. Using
pulsed-wire anemometry, Castro and Haque [1987] measured very extensive turbulence data of
a separation “bubble.” The flow separated off a flat plate normal to the flow and reattached on
a long splitter plate. They found that the features of a separated shear layer bounding a highly
turbulent reverse-flow region are quite different from those of the plane mixing layer between two
streams. Other separation “bubbles” have been measured on upstream-facing, blunt plates and

downstream-facing steps.

In an attempt to model a turbine blade separation “bubble,” Patrick (1987] created a large
separation “bubble” on a flat plate test surface of a wind tunnel with an imposed pressure
distribution. He modeled the “cove” separation caused by the large curvature on the pressure
surface of a turbine blade. The separated boundary layer was an equilibrium turbulent boundary
layer and not a laminar boundary layer. Also, a favorable pressure gradient existed downstream
of the separation “bubble.” Patrick [1987] made extensive two-component LDV measurements
and has seemingly measured the only separated region with 100% instantaneous backflow. He
found that this backflow shear layer even had a logarithmic region. From observations of our
data, we might conclude that no others have found 100% instantaneous backflow because no one
else had created a large enough separation “bubble” to make measurements close enough to the

surface.
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Downstream of the separation “bubble,” measurements have shown how the reattached
boundary layer recovers from separation. Mueller, Korst, and Chow [1964] show that these rede-
veloping turbulent boundary layers are similar to those for a turbulent boundary layer developing
toward separation except that they are traversed in reverse. For the rare case of a reattached
laminar boundary layer, Goldstein, Eriksen, Olson, and Eckert [1970] measured the same trend
as for redeveloping turbulent boundary layers. Patrick [1987] showed that the inner region of the
newly developed turbulent boundary layer quickly reached equilibrium on the basis of the forma-
tion of a logarithmic region. However, the relaxation of the outer region occurred more slowly.
Despite the local pressure gradient—-which became favorable downstream of reattachment-a very
large wake region was evident just downstream of reattachment and this wake region slowly de-
cayed with downstream distance. Our data shows the importance of the streamwise pressure

gradient on the recovery process: An adverse pressure gradient will lengthen the recovery region.

Thus far, all of our observations of separation “bubbles” concern the time-average aspects.
However, as Eaton and Johnston [1982] point out, the fact that the flow near the wall can be
instantaneously moving either upstream or downstream suggests that a large-scale unsteadiness
is present in the flow. As an introductory analysis, let us examine the separation “bubble” in
the manner that Kline [1966] examined the flow over a downstream-facing step. In order for
a fluid particle upstream of the separation “bubble” to flow past the reattachment point, the
particle must have a stagnation pressure larger than the static pressure at reattachment. This
criterion may not be satisfied for particles deep within the upstream boundary layer and hence
such particles can pass beyond reattachment only if shear work is done on them by laminar or
turbulent mixing from fluid particles in the freestream after separation. Kline [1966] claims that
this mixing is insufficient to energize all such particles and therefore, the dividing streamline
passes above the separation point as shown in figure 65. Then, a certain fraction of the boundary
layer fluid passes into the backflow region. Without an escape path via continuity, the separation

region grows in time until finally an interaction occurs between the recirculating region and
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the outer flow. In a recurring process, some of the recirculating region is “torn away” and the

separation region is very rapidly reduced in size.

Theoretical observations-such as the one made by Kline [1966]-went unobserved experimen-
tally until researchers developed more sophisticated means of measurement. Although its nature
has not been fully explained, experiments have now shown us that a large-scale, low-frequency
unsteadiness does accompany separation “bubbles.” On the separation “bubble” at the entrance
to a pipe, McGuiness [1978] used smoke visualization to observe that the separation “bubble®
was occasionally cut roughly in two and that the downstream portion proceeded downstream as
a “divorced eddy.” Eaton and Johnston [1982] used hot-wire and thermal-tuft probes to show
that the reattachment point beyond a downstream-facing step moves upstream and downstream
at some low frequency with no regular periodicity. They felt that the “flapping” motion is caused
by an instantaneous imbalance between the shear-layer entrainment from the recirculating sone

on the one hand and reinjection of fluid near reattachment on the other.

For flow over an upstream-facing, blunt plate, Kiya and Sasaki [1983] and Cherry, Hillier, and
Latour [1984] observed a low-frequency “flapping” of the shear layer. Using “x”-configuration hot
wires and split-film probes, Kiya and Sasaki [1983] claimed that the “Bapping”® of the shear layer
is closely related to the shrinkage and enlargement of the separation “bubble.” The the outer
shear layer provides a shearing motion to the reverse flow region; thus increasing the vorticity in
the separation “bubble.” In a range of fairly low frequencies, Kiya and Sasaki [1983] found some
small-scale structures to break away from the “bubble.” However, they felt that some unknown
mechanisms hindered this very weak, regular shedding and as a result, a large amount of vortic-
ity is accumulated within the “bubble.” This is accompanied by a considerable increase of the
“bubble” length and outward motion of the shear layer. When a sufficient amount of vorticity
is accumulated, an extremely large structure breaks away from the “bubble” and the “bubble”

then rapidly shrinks and the shear layer moves inwards. This large-scale unsteadiness occurs

at a very low frequency. The shed “vorticies” travel downstream without significantly changing
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their structure within a certain distance after reattachment. From instantaneous smoke visu-
alizations and fast-response, static-pressure measurements at the surface, Cherry, Hillier, and
Latour [1984] also observed structures of various scales breaking away from the separation “bub-
ble” at various low frequencies. Large-scale motion with recurring “bursts” and the shedding of
small-scale structures appeared to indicate a temporary interruption to the shear-layer-structure
growth/coalescence process. Showing similar results, the pulsed-wire anemometry data of Castro

and Haque [1987] found a low-frequency motion most noticeable near separation.

A low-frequency unsteadiness has also been observed for separation “bubbles” without a
salient edge to fix the location of separation. We have already observed the intermittency of the
separation of a turbulent boundary layer. However, the separation point of a laminar boundary
layer can also vary unsteadily because of the ellipticity of the flow. Any disturbances-including
any low-frequency unsteadiness—can cause a “jitter” of the laminar separation point. Patrick
[1987] used flow visualization to show unsteadiness at both turbulent detachment and turbulent
reattachment. Because his separation “bubble” had a very vigorous region of backflow, Patrick
[1987] observed an unusual occurrence. His smoke flow visualization movies showed a random
streamline “flapping” near reattachment with large-scale eddies being convected alternately up-
stream and downstream from the impingement point on the test surface. The upstream motion

might be a manifestation of the reinjection of fluid near reattachment.

A few researchers have found a low-frequency unsteadiness involved with the separation
“bubbles” on laminar flow airfoils. These low Re. airfoils have a large extent of laminar flow and
are designed for low drag and high performance under cruise conditions. The adverse pressure
gradient downstream of the midchord location on the suction surface results in a separation
“bubble.” Zaman, Bar-Sever, and Mangalam [1987] made hot-wire velocity spectra measurements
in the airfoil far wake. The measurements showed a low-frequency, sharp peak, indicating a
vortex shedding for flow just prior to stall (shown by smoke flow visualisation). They speculated

that the origin of this unsteadiness can be traced to a bursting of the separation “bubble”
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and the associated instability. Also, they found that acoustic excitation at an appropriately
high frequency could eliminate this shedding completely and they postulated that the acoustic

excitation eliminated energetic vortical structures from the separated shear layer.

Another interesting experiment also involved laminar flow airfoils. Stack, Mangalam, and
Kalburgi [1988] used a multi-element heat transfer sensor to obtain simultaneous, directionally
sensitive measurements of the dynamic shear stress conditions on the suction surface. In the
vicinity of a separation “bubble,” the time history plots of their signals showed that the root-
mean-square values were a minimum at separation, became the largest at peak transition, and
then reduced toward turbulent reattachment. After applying a low-pass filter with a cutoff fre-
quency of 10 Hz, they discovered a “phase reversal phenomenon” from both the filtered time
signals and some cross-correlations of these signals. Looking at the low-frequency variation in
vall shear stress near the detachment and reattachment points, they found that probes com-
pletely within the “bubble” correlated at a phase nearly 180 degrees differently than with probes
completely out of the “bubble.” Resolution of the cross-correlations and the “phase reversal
phenomenon” is a function of sensor spacing. They felt that the “phase reversal phenomenon”
was related to the unsteady nature of laminar separation and turbulent reattachment. This type
of measurement proved to be a desirable method to find the detachment and reattachment points

without the need for probe calibration.

Some differences remain as to the magnitudes of both the length scale and the frequency
of this separation “bubble” unsteadiness. For the largest turbulent eddies, Eaton and Johnston

[1982] use & for a length scale and define a Strouhal number as

St =

However, since the length of a separation “bubble” is typically five to ten times the boundary
layer thickness, they feel that the low-frequency motions have time scales greater than or equal

to the time it takes freestream fluid particles to pass over the separation “bubble.” From their
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spectrum data, we can determine that the low-frequency motion has a frequency of 4.8 Hz and

we can define a Strouhal number as

fl'sb
t = ~ 0.
S v, 0.15

where z,, is the length of the separation “bubble.” Using this definition of St and their surface
pressure spectra, Kiya and Sasaki [1983] found a “flapping” frequency of 39.6 Hz and St ~ 0.12
while Cherry, Hillier, and Latour [1984] obtained values less than 7.2 Hz and 0.125. Both groups
estimated St & 0.6 to 0.7 for the very weak regular shedding of smaller-scale structures from the

“bubble.”

For the low-frequency unsteadiness associated with the separation “bubbles” on laminar flow
airfoils, researchers report smaller values of St~possibly because a salient edge no longer fixes the
location of detachment. Zaman, Bar-Sever, and Mangalam [1987] measured frequency peaks in
the velocity spectra within the far wake of 4.5, 7.8, 10.2, and 14.8 Hz at successively increasing
values of freestream velocity. Using V) instead of U,, and c instead of Z45, they obtain a Strouhal
number of 0.07. With the previous definition of St, one would certainly believe that the value
of St would be an order of magnitude smaller than 0.07. Remember that Stack, Mangalam, and
Kalburgi [1988] found their “phase reversal phenomenon” at a frequency less than 10 Hz which

corresponds to a value of St less than 0.02.

While experiments have shown that a large-scale, low-frequency unsteadiness does accom-
pany separation “bubbles,” these same experiments have been unable to determine the inter-
relations between this unsteadiness and any three-dimensional flow effects. Although three-
dimensional flow effects probably accompany separation “bubbles,” the various experimental
setups will also affect the three-dimensionality. Goldstein, Eriksen, Olson, and Eckert [1970]
found that three-dimensional secondary flows caused smoke entering near their side walls to
travel spanwise into the separation “bubble” in the middle of the test section before being con-

vected downstream. Eaton and Johnston [1982], Kiya and Sasaki {1983], and Cherry, Hillier, and
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Latour [1984] all noticed a spanwise system of large-scale, counterrotating vorticies which Cherry,
Hillier, and Latour [1984] claimed began very rapidly after separation and were not particularly
accentuated by the reattachment process. Cherry, Hillier, and Latour [1984] also found that
various shedding frequencies from the separation “bubble” occurred across the span and that the
three-dimensionality can affect any correlations. Eaton and Johnston [1982] postulated that the

low-frequency unsteadiness could be tied into the breakdown of the spanwise vorticies.

Now, let us proceed with the analysis of the separation “bubble” on the suction surface for
i = —8.5 degrees. Figure 66 shows a summary of some of the LDV data in the vicinity of the
separation “bubble” along with the chordwise locations of the Aush-mounted, hot-film probes.
Because of the small thickness of the separation “bubble,” we could not integrate the mass flow
to adequately locate the dividing streamline. After converting the hot-film voltage signals into
dynamic shear stress signals (see chapter 4), we plotted the first 0.2 seconds of the surface shear
stress time history in figure 87. The probe at 30.0% chord lies within the laminar region and
consequently, 7, varies very little with time. At 40.6% and 45.0% chord, the probes lie within
a region where some instantaneous backflow was measured. These probes measured some low-
frequency variation in 7,. Some higher frequency variation is noticeable at 50.2% chord, but the
values of 7, remain near zero at all times. From our LDV data at 55.0% chord, figure 66 shows
the instantaneous backflow reaches a maximum, §* begins to decrease, and & begins to increase
causing us to speculate that transition occurs abruptly near this location. The hot-film signal at
55.8% chord confirms this speculation as the near zero values of 1, intermittently become quite
large.2! By 57.9% chord, both low- and high-frequency unsteadiness in 7,, becomes evident,
while the mean value of 7, grows larger. These trends continue through 60.0% chord and 69.8%

chord, where the signal looks turbulent.

21 Geveral values of 1, at both 55.8% and 57.9% chord occasionally stop abruptly at a maximum
value. At these locations, we mistakenly set our voltage gains too high on the constant-
temperature anemometer and the output voltage was occasionally amplified to values greater
than the maximum allowed input voltage on our analog-to-digital converter. Nonetheless,
the output signals can be reasonably interpreted. This same effect will later be noticed on
the histogram for 55.8% chord.
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Figure 67. Time signals of the dynamic shear stress on the suction surface for i = —8.5 degrees
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We can summarize these time history signals by plotting the chordwise variation of the root-
mean-square values of 7y normalized by the mean values of 7. Figure 68 shows this variation in
1'l’u2 /Tw. \/T_,L—z /7w rises from near zero in the laminar boundary layer to large, irregular values
in the transition region of the separation “bubble.” Finally, 7'{02 /Tw decreases and begins to
level off near a value of 0.446. Earlier, we analyzed the LDV data in this region as turbulent
and the work of Alfredsson, Johansson, Haritonidis, and Eckelmann [1988] confirms this. They
measured the fluctuating values of 7, with various types of hot-wire and hot-film sensors in
turbulent boundary layers. They concluded that \/;? /7w = 0.40 for turbulent boundary layers

while the values of skewness and kurtosis were 1.0 and 4.8, respectively.

Continuous time signals can be plotted as histograms in a similar manner as the discrete
time signals from LDV measurements. Figure 69 shows histograms of the signals from all eight
of our flush-mounted, hot-film probes. For probes where the flow is either laminar or 7, is
small, the values of 7, remain concentrated around the mean value. As transition begins, the
distributions show a positive skewness which gradually lessens. The positive skewness remains
for the turbulent 7, distribution at 69.8% chord-giving values of skewness and kurtosis of 1.37
and 6.29, respectively. Again, these values are near the turbulent values reported by Alfredsson,

Johansson, Haritonidis, and Eckelmann [1988).

After taking an FFT of each time signal, we can examine the spectra of r, from each probe

in figure 70. The decibel (dB) values showing the amplitude of 7, is defined as
dB value = 20log(mw)

where 7, has units of Pa. As indicated in the time signals of figure 67, the spectra of figure 70
show that most of the fluctuations of 7, for 30.0%, 40.6%, and 45.0% chord occur at frequencies of
400 Hz or less. Further downstream, the amplitude of the higher frequency fluctuations increases
as transition begins. The high frequency fluctuations at 50.2% chord are 15 dB {or 6 times)

greater than the high frequency fluctuations at 45.0% chord. Then as the peak transition is
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reached, the high frequency fluctuations at 50.2% chord increase by 34 dB (or a factor of 50)
to the high frequency fluctuations at 55.8% chord. As expected, the transitional and turbulent

shear layers have broadband fluctuations of Tw

From the time signals and spectra of the dynamic shear stress, we cannot directly obtain any
information on the large-scale, low-frequency unsteadiness associated with separation “bubbles.”
Emphasizing the regions near detachment and reattachment, we computed correlation coefficients
from signals of selected probe pairs. Table 4 shows that only the probes at 40.6% and 45.0%
chord show a significant positive correlation. Remember that the signals at these two locations
both showed fairly low frequency fluctuations of 7, in figure 67. The signals from the probes at
30.0% chord and 45.0% chord showed some negative correlation. From our previous discussion,
these two probes appear on either side of the detachment point and they should show the “phase
reversal phenomenon” of Stack, Mangalam, and Kalburgi [1988]. Following their lead, we filtered
the time signals using a low-pass, Butterworth filter with a cutoff frequency of 10 Hz. Figure
71 shows the filtered time signals while table 4 shows the new correlation coefficients computed
from the filtered time signals. Near detachment, C,; between probe signals at 30.0% and 45.0%
chord becomes more negative when the time signals are filtered—thus showing that the “phase
reversal phenomenon” does occur at a very low frequency. Surprisingly, the probe signal at
40.6% chord does not have a negative correlation with either the upstream or downstream probe
signals. Possibly, this probe lies very close to the detachment point—even though the oil film flow

visualization located the detachment point at 35.3% + 2.0% chord.

The “phase reversal phenomenon” is more evident near the reattachment point using our
filtered time signals. As seen in table 4, a strong negative C,; occurs between the filtered time
signals at 60.0% and 69.8% chord while a less negative C,; occurs between the filtered time
signals at 57.9% and 69.8% chord. Also, the filtered signals at 57.9% and 60.0% chord are very
positively correlated. The filtered time signals in figure 71 show the same trends. In the same

manner of Stack, Mangalam, and Kalburgi [1988], our observations of the filtered time signals
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Table 4. Correlation coefficients between various time signals and filtered time signals from

the suction surface for i = —8.5 degrees

percent chord location of Cgp of unfiltered Cap of filtered
probe pair time signals time signals

30.0 40.6 -0.038 0.040

30.0 45.0 -0.159 -0.539

40.6 45.0 0.336 0.280

57.9 60.0 0.044 0.604

57.9 69.8 -0.008 -0.008

60.0 69.8 -0.023 -0.368
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and C,p place reattachment between 60.0% and 69.8% chord. The oil film visualization place the

reattachment point at 59.8% + 2.3% chord.

As a final analysis, we examined the cross-spectra between the signals from various probes
near detachment and reattachment. Near detachment, the probe signals at 30.0% and 40.6%
chord and the probe signals at 40.6% and 45.0% chord showed no definite correlation. The
probe signals at 30.0% and 45.0% chord showed a strong negative correlation near 2.4 Hz. Just
before reattachment, the probe signals at 57.9% and 60.0% chord showed a very strong positive
correlation near 6.0 Hz. Across the reattachment point, the probe signals at 60.0% and 69.8%
chord showed some negative correlation near 6.0 Hz while the probe signals at 57.9% and 69.8%

chord showed a small amount of negative correlation near 3.6 Hz.

Stack, Mangalam, and Kalburgi [1988] used very high quality, directionally sensitive heat
transfer sensors that were spaced close together to study the “phase reversal phenomenon.”
Even using a simple technique, we uncovered some evidence of this large-scale, low-frequency
unsteadiness. For this separation “bubble,” we can characterize this unsteadiness with a Strouhal
number. From the oil film flow visualization, we can obtain x,; =~ 60 mm while we can estimate

U., ~ 38 m/sec from the LDV data. Then, using f ~ 6 Hz from the cross-spectra results in

fxab

T =
S U,

~ 0.01

which compares well with the results of Stack, Mangalam, and Kalburgi [1988] and Zaman,

Bar-Sever, and Mangalam [1987] for separation “bubbles” on laminar flow airfoils.

Wakes for a -8.5 Degree Incidence

In figure 18, both the near wakes at 106.0% and 109.7% chord and the far wakes at 131.9%

and 152.6% chord were nearly symmetric. After replotting these wakes as velocity defects in figure
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72, we find that all four wakes show good similarity with respect to the Gaussian distribution
of Lakshminarayana and Davino [1980] (away from the wake edge). Having near-wake similarity
seems in contrast with our data from the first two incidence angles as well as the data of Hobbs,
Wagner, Dannenhoffer, and Dring [1982]. However, these data all showed larger regions of trailing
edge separation on the suction surface than did the data for the current flow field. Evidently,
the distance required for the wakes to show self-preservation is extended farther downstream as

the size of the trailing edge separation region is enlarged.

Aside from showing better similarity, the wakes for i = —8.5 degrees are much smaller and
show much less curvature of the wake centerline. After calculating the integral parameters, we
can plot the displacement surface in figure 73. Without the large displacement caused by the

trailing edge separation, the wake centerline shows little curvature.

The turbulence intensity profiles in figure 74 are quite different than the profiles for the near
wakes at i = 5.0 degrees and i = —1.5 degrees. Although these profiles are not as symmetric as
the mean-velocity profiles, they show more symmetry than the turbulence intensity profiles at
the two previous incidence angles. Also, the 95% confidence bands on the turbulence intensity
measurements are much smaller for i = —8.5 degrees. As with all wakes, however, the peaks in
turbulence intensity track the regions of large mean-velocity gradients and occur away from the

wake centerline.
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Chapter 8 Summary and Conclusions

The numerical calculations of turbomachinery flow fields require the computing of many
unsteady and three-dimensional flow phenomena. Before computing these complex flow fields
with confidence, one must be able to compute the periodic, two-dimensional flow over a turbo-
machine blade in cascade. In either case, viscous calculations for turbomachinery applications
have been handicapped by both a lack of sufficiently detailed and precise data against which
these calculations can be compared and a lack of understanding of the physics involved within
this complex flow field. In order to help overcome this problem, we designed an experiment to
measure the boundary layers and wakes about a double-circular-arc, compressor blade in cascade.
The measurements about these highly loaded blades have been made at a Re. near 500,000 and

at three incidence angles—for comparisons of computations at off-design conditions.

A periodic, two-dimensional cascade flow has been developed without the use of continuous
side wall suction. Instead, a combination of strong suction just upstream of the blade pack and
tailboards are used to create the desired flow—allowing the measurements to be made with a
non-intrusive, one-component LDV system. Since a consensus opinion on how to correct velocity

bias in a highly turbulent flow is still lacking, we have used simple arithmetic averaging to
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determine the streamwise components of mean velocity and turbulence intensity. However, in
measurements of very thin laminar boundary layers, we have shown that a combination of mean-
velocity-gradient broadening and a vibration of the LDV measurement volume results in elevated
turbulence levels. Aside from the LDV measurements, several other experimental techniques have
helped characterize the flow fields. Static-pressure taps, Pitot-static probes, and five-hole probes
were used in conjunction with pressure transducers to measure flow quantities upstream and
downstream of the blade pack as well as on the blade surface. Flow visualization has also helped
quantify the blade surface flow characteristics through a chemical sublimation method and an
oil ilm method. We have also made dynamic wall shear stress measurements with hot films and

turbulence intensity measurements with hot wires.

To help understand the physics of the cascade flow field we have presented a method by
which we can analyze the raw data in regions of laminar, transitional, turbulent, and separated
flows. Included are methods that allow one to account for a pressure gradient that occurs normal
to the blade surface, to compute important boundary layer and wake parameters, and to fit or
compare the data with empirical or theoretical equations for velocity profiles. Different methods
to account for the normal pressure gradient need further investigation-perhaps through second-

order boundary layer theory.

Near the leading edge, the incidence angle causes the stagnation point to lie on either the
pressure or suction surface of the blade. On this stagnation surface, the streamwise pressure
gradient begins as favorable and results in a region where the boundary layer is laminar. Falkner-
Skan solutions describe this region fairly well, although the numerical, parabolic computations
of STANS show even better comparisons. Further downstream, an adverse streamwise pressure
gradient will either cause the laminar boundary layer to separate or initiate “natural® transition.
Freestream turbulence intensity, concave surface curvature, and the continuing variation of the
streamwise pressure gradient all can strongly affect “natural” transition. On the surface opposite

of the stagnation point, a severe adverse pressure gradient results in the presence of a separation
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“bubble” which transitions the flow to turbulence. One must take note that these highly loaded,
double-circular-arc blades have a small leading edge radius and may not be typical of modern

compressor blades. Further investigation is required of blade leading edge flows.

For these blade profiles with a Re, of 500,000, we found that the boundary layer transi-
tion was usually initiated by the separation of the laminar boundary layer and the subsequent
reattachment of either a fully turbulent boundary layer or possibly an intermittently turbulent
boundary layer. It seems reasonable to conclude that transition through a separation “bubble”
occurs much more often than “natural” transition on most compressor blades. Recently, Schulz
and Gallus [1988] made several types of measurements and determined that transition occurred
on the suction surface of their annular compressor cascade blade. They also made predictions
with a boundary layer integral method using empirical criteria given by Dunham [1972] to pre-
dict boundary layer transition and turbulent separation. At all span locations and all incidence

angles, they predicted that transition always occurred via a laminar separation “bubble.”

Separation “bubbles” lead to sudden transition because the outer shear layer is inherently
unstable. Numerical computations must either model overall characteristics of the “bubble”-
such as size, location, and transitional aspects—or rely on very complex turbulence models. In
either case, the computations will be affected by the unsteady and three-dimensional state of the
“bubble.” A recurring enlargement and shrinkage of the separation “bubble” seems to occur at a
very low frequency. The recirculating region of the “bubble” grows either from fluid deep within
the upstream boundary layer entering near detachment, from fluid being entrained from the
freestream by the outer shear layer, or from fluid being reinjected upstream near reattachment.
The outer region continually shears this recirculating region and some small-scale structures do
break away. However, the “bubble” continually grows until instabilities cause large-scale struc-
tures to break away and convect downstream at a very low frequency. Also, this unsteadiness can
interact with three-dimensional flow effects within the “bubble.” The nature of this low-frequency

unsteadiness warrants much additional research-both experimentally and computationally. This



182
research should attempt to determine how the separation “bubble” grows, what leads to the

eventual instability, and what length scale best characterizes the unsteadiness.

After transition, nonequilibrium turbulent boundary layers develop because of the continu-
ally changing streamwise pressure gradient. If the turbulent boundary layer develops downstream
of a separation “bubble,” the velocity profiles are similar to the inflectional profiles developing to-
ward separation except that they are traversed in reverse. This recovery process can be extended
downstream if the streamwise pressure gradient is adverse. On the suction surface of compressor
blades, these turbulent boundary layers can encounter a strong adverse pressure gradient and the
boundary layers will begin to intermittently separate near the trailing edge. Even for intermittent
separation, the wall-wake equation of Coles [1956] describes the turbulent velocity profiles quite
well. After some region of intermittent separation, the turbulent boundary layer can detach.
In the inner region of the separated shear layer, the mean backflow data shows some similarity
using the maximum backflow velocity as the velocity scale and the total backflow thickness as
the length scale. However, no similarity has been found to adequately describe the outer region

of separation. Similarity should be investigated further in both regions.

As the turbulent shear layers reach the trailing edge, a near wake develops where its structure
shows no similarity or self-preservation. A significant curvature of the wake centerline can develop
if the blade has any trailing edge loading. Downstream, a far wake develops where the velocity
profile shows Gaussian similarity. If a significant amount of separation occurs upstream of the
trailing edge, the development of this Gaussian similarity is delayed until further downstream.
An additional examination of the velocity profile in the near wake region is needed. In addition,
different length scales for similarity are required if we want to describe the wake profiles from

the characteristics of the trailing edge boundary layers.

These measurements form a good foundation for a data base on blade boundary layers.2?

22 Data tables and computer tapes of the data are available at the Applied Research Laboratory
from either William C. Zierke or Steven Deutsch, at the NASA Lewis Research Center from
Nelson Sanger, or from COSMIC. .

Y
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Eventually this database of boundary layer measurements on cascades should be extended to
other blade shapes-representative of both compressor and turbine blades. Multi-component
measurements could be used to extract turbulence characteristics. To continually increase the
three-dimensional effects on the blade boundary layers, researchers should extend their measure-
ments to annular cascades. These measurements might also include different levels of freestream

turbulence. Finally, more research is required in the area of unsteady blade boundary layers.

In conclusion, these very detailed and precise measurements should provide a challenging and
yet necessary test for comparison with numerical, viscous computations within a turbomachinery
flow field. These computations must compute laminar, transitional, turbulent, and separated
boundary layers as well as near and far wakes. Our initial numerical computations with STANS
show the difficulties a parabolic boundary layer code has in the frequent regions of separation.
Better models of separation, transition, and near-wake flows appear necessary in order to compute

these flow fields.
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Appendix A Blade Profile

The equations for the pressure surface, suction surface, and camberline of the double-circular-
arc blades used in the current study can be written as

23 + (yp + 219.7)? = 246.82

22 + (y» + 149.5)? = 189.1%

and
z? + (yo + 179.4)2 = 21282 .

All of the dimensions are in millimeters. The origin of the coordinate system used here is located
on the chord line at midchord. The z coordinate is parallel to the chord, while the y coordinate
is normal to the chord. Figure 75 shows the double-circular-arc blade where the camber angle
(¢) is 65 degrees and the blade chord length (c) is 228.6 mm. This value of ¢ is measured from
the center of the leading edge circle to the center of the trailing edge circle. Both the leading
edge and trailing edge radii were 0.9144 mm and the corresponding circles met the two blade
surfaces at the tangency points.
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Appendix B Parameter Tables

The boundary layer and wake parameters mentioned in chapter 6 have been computed for
all of the shear layers presented in chapters 5 and 7. This appendix includes tables of all these
parameters, as well as the measured static-pressure coefficients for all three incidence angles.
The values of U, that accompany these measured values of C;, were computed from the inviscid

equation
U = Vi /1.0 — G, .
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Table 5. Static-pressure coefficients for i = 5.0 degrees

Pressure Surface Suction Surface
Percent Cy U. Percent Cy U,
Chord (m/sec) Chord (m/sec)
1.0 0.685 18.58 1.0 -1.346 50.72
3.0 0.547 22.28 2.0 -1.302 50.24
4.0 0.523 22.87 3.0 -0.936 46.08
5.0 0.508 23.22 5.0 -0.481 40.30
6.0 0.508 23.22 6.0 -0.453 39.92
12.2 0.509 23.20 12.2 -0.349 38.46
18.3 0.526 22.80 18.3 -0.270 37.32
24.5 0.545 22.33 24.5 -0.167 35.77
30.7 0.553 22.14 30.7 -0.067 34.20
36.8 0.574 21.61 36.8 0.038 32.48
43.0 0.583 21.38 43.0 0.097 31.47
49.2 0.588 21.25 49.2 0.153 30.48
55.3 0.588 21.25 55.3 0.196 29.69
61.5 0.590 21.20 61.5 0.243 28.84
67.7 0.597 21.02 7.7 0.260 28.51
73.8 0.584 21.36 73.8 0.292 27.89
80.0 0.565 21.84 80.0 0.301 27.711
82.5 0.551 21.19 82.5 0.309 27.55
85.4 0.543 22.38 88.3 0.297 27.79
88.3 0.523 22.87 94.5 0.307 27.59
91.3 0.494 23.55 97.3 0.308 27.57
94.5 0.456 24.42
97.3 0.400 25.65
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Table 9. Static-pressure coeflicients for i = —1.5 degrees
Pressure Surface Suction Surface
Percent Cyp U, Percent Cp U,
Chord (m/sec) Chord (m/sec)
1.0 0.462 24.12 1.0 -1.047 47.04
3.0 0.449 24.40 2.0 -0.306 37.57
4.0 0.451 24.36 3.0 -0.233 36.51
5.0 0.456 24.25 6.0 -0.268 37.02
6.0 0.460 24.16 12.2 -0.254 36.82
12.2 0.486 23.58 18.3 -0.188 35.81
18.3 0.512 22.98 24.5 -0.111 34.66
24.5 0.536 22.39 30.7 -0.014 33.12
30.7 0.554 21.97 36.8 0.064 31.81
36.8 0.574 21.47 43.0 0.117 30.90
43.0 0.590 21.06 49.2 0.169 29.97
49.2 0.603 20.71 55.3 0.228 28.90
55.3 0.610 20.53 61.5 0.275 27.99
61.5 0.8618 20.33 67.7 0.311 27.30
67.7 0.614 20.43 73.8 0.333 26.86
73.8 0.608 20.58 80.0 0.354 26.43
82.5 0.589 21.08 82.5 0.355 26.41
85.4 0.579 21.32 88.3 0.372 26.06
88.3 0.566 21.66 94.5 0.369 26.12
91.3 0.544 22.20 97.3 0.360 26.29
94.5 0.513 22.94
97.3 0.463 24.10
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Table 13. Static-pressure coefficients for i = —8.5 degrees
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Pressure Surface

Suction Surface

Percent Cp U. Percent Cy Ue
Chord (m/sec) Chord (m/sec)
1.0 -0.339 38.51 1.0 -0.177 36.10
3.0 0.151 30.66 2.0 -0.180 36.15
4.0 0.186 30.02 3.0 -0.235 36.98
5.0 0.194 29.89 6.0 -0.346 38.61
6.0 0.200 29.77 12.2 -0.389 39.23
12.2 0.284 28.15 18.3 -0.398 39.34
18.3 0.345 26.93 24.5 -0.362 38.85
24.5 0.386 26.07 30.7 -0.297 37.91
30.7 0.419 25.36 36.8 -0.230 36.92
36.8 0.451 24.65 43.0 -0.170 35.99
43.0 0.476 24.09 49.2 -0.114 35.12
49.2 0.494 23.68 55.3 -0.051 34.12
55.3 0.507 23.37 61.5 0.010 33.11
61.5 0.523 23.00 67.7 0.055 32.35
67.7 0.536 22.67 73.8 0.121 31.20
73.8 0.540 22.57 80.0 0.182 30.10
82.5 0.532 22.77 82.5 0.217 29.44
85.4 0.539 22.60 88.3 0.275 28.34
88.3 0.529 22.85 94.5 0.329 27.27
91.3 0.513 23.22 97.3 0.336 27.12
94.5 0.493 23.70
97.3 0.453 24.60
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